|   | 
Details
   web
Records
Author Fomin, V.M.; Misko, V.R.; Devreese, J.T.; Moshchalkov, V.V.
Title On the superconducting phase boundary for a mesoscopic square loop Type A1 Journal article
Year 1997 Publication Solid State Communications Abbreviated Journal Solid State Commun
Volume 101 Issue Pages 303-308
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1997WB80400001 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 39 Open Access
Notes Approved (down) Most recent IF: 1.554; 1997 IF: 1.323
Call Number UA @ lucian @ c:irua:20355 Serial 2456
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.
Title Quantum transport in graphene Hall bars : effects of side gates Type A1 Journal article
Year 2017 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 257 Issue 257 Pages 20-26
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quantum electron transport in side-gated graphene Hall bars is investigated in the presence of quantizing external magnetic fields. The asymmetric potential of four side-gates distorts the otherwise flat bands of the relativistic Landau levels, and creates new propagating states in the Landau spectrum (i.e. snake states). The existence of these new states leads to an interesting modification of the bend and Hall resistances, with new quantizing plateaus appearing in close proximity of the Landau levels. The electron guiding in this system can be understood by studying the current density profiles of the incoming and outgoing modes. From the fact that guided electrons fully transmit without any backscattering (similarly to edge states), we are able to analytically predict the values of the quantized resistances, and they match the resistance data we obtain with our numerical (tight-binding) method. These insights in the electron guiding will be useful in predicting the resistances for other side-gate configurations, and possibly in other system geometries, as long as there is no backscattering of the guided states.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000401101400005 Publication Date 2017-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.554 Times cited Open Access
Notes ; This work was supported by the Methusalem programme of the Flemish government. One of us (F. M. Peeters) acknowledges correspondence with K. Novoselov. ; Approved (down) Most recent IF: 1.554
Call Number UA @ lucian @ c:irua:143761 Serial 4604
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Dong, H.M.; Yu, Y.; Qin, H.; Peeters, F.M.
Title Enhancement of plasmon-photon coupling in grating coupled graphene inside a Fabry-Perot cavity Type A1 Journal article
Year 2018 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 280 Issue 280 Pages 45-49
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a theoretical investigation of the plasmon-polariton modes in grating coupled graphene inside a Fabry-Perot cavity. The cavity or photon modes of the device are determined by the Finite Difference Time Domain (FDTD) simulations and the corresponding plasmon-polariton modes are obtained by applying a many-body self-consistent field theory. We find that in such a device structure, the electric field strength of the incident electromagnetic (EM) field can be significantly enhanced near the edges of the grating strips. Thus, the strong coupling between the EM field and the plasmons in graphene can be achieved and the features of the plasmon-polariton oscillations in the structure can be observed. It is found that the frequencies of the plasmon-polariton modes are in the terahertz (THz) bandwidth and depend sensitively on electron density which can be tuned by applying a gate voltage. Moreover, the coupling between the cavity photons and the plasmons in graphene can be further enhanced by increasing the filling factor of the device. This work can help us to gain an in-depth understanding of the THz plasmonic properties of graphene-based structures.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000439059600008 Publication Date 2018-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 1 Open Access
Notes ; This work is supported by the National Natural Science Foundation of China (Grand No. 11604192 and Grant No. 11574319); the Center of Science and Technology of Hefei Academy of Science; the Ministry of Science and Technology of China (Grant No. 2011YQ130018); Department of Science and Technology of Yunnan Province; Chinese Academy of Sciences. ; Approved (down) Most recent IF: 1.554
Call Number UA @ lucian @ c:irua:152369UA @ admin @ c:irua:152369 Serial 5024
Permanent link to this record
 

 
Author Wang, W.; Li, L.; Kong, X.; Van Duppen, B.; Peeters, F.M.
Title T4,4,4-graphyne : a 2D carbon allotrope with an intrinsic direct bandgap Type A1 Journal article
Year 2019 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 293 Issue 293 Pages 23-27
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A novel two-dimensional (2D) structurally stable carbon allotrope is proposed using first-principles calculations, which is a promising material for water purification and for electronic devices due to its unique porous structure and electronic properties. Rectangular and hexagonal rings are connected with acetylenic linkages, forming a nanoporous structure with a pore size of 6.41 angstrom, which is known as T-4,T-4,T-4-graphyne. This 2D sheet exhibits a direct bandgap of 0.63 eV at the M point, which originates from the p(z)( )atomic orbitals of carbon atoms as confirmed by a tight-binding model. Importantly, T-4,T-4,T-4-graphyne is found to be energetically more preferable than the experimentally realized beta-graphdiyne, it is dynamically stable and can withstand temperatures up to 1500 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460909600005 Publication Date 2019-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 17 Open Access
Notes ; This work was supported by National Natural Science Foundation of China (Grant Nos. 11404214 and 11455015), the China Scholarship Council (CSC), the Science and Technology Research Foundation of Jiangxi Provincial Education Department (Grant Nos. GJJ180868 and GJJ161062) the Fonds Wetenschappelijk Onderzoek (FWO-V1), and the FLAG-ERA project TRANS2DTMD. BVD was supported by the Research Foundation – Flanders (FWO-V1) through a postdoctoral fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government department EWI. ; Approved (down) Most recent IF: 1.554
Call Number UA @ admin @ c:irua:158503 Serial 5234
Permanent link to this record
 

 
Author Chaves, A.; Peeters, F.M.
Title Tunable effective masses of magneto-excitons in two-dimensional materials Type A1 Journal article
Year 2021 Publication Solid State Communications Abbreviated Journal Solid State Commun
Volume 334 Issue Pages 114371
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Excitonic properties of Ge2H2 and Sn2H2, also known as Xanes, are investigated within the effective mass model. A perpendicularly applied magnetic field induces a negative shift on the exciton center-of-mass kinetic energy that is approximately quadratic with its momentum, thus pushing down the exciton dispersion curve and flattening it. This can be interpreted as an increase in the effective mass of the magneto-exciton, tunable by the field intensity. Our results show that in low effective mass two-dimensional semiconductors, such as Xanes, the applied magnetic field allows one to tune the magneto-exciton effective mass over a wide range of values.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000670329600003 Publication Date 2021-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.554 Times cited Open Access Not_Open_Access
Notes Approved (down) Most recent IF: 1.554
Call Number UA @ admin @ c:irua:179762 Serial 7037
Permanent link to this record
 

 
Author Kalitzova, M.; Vlakhov, E.; Marinov, Y.; Gesheva, K.; Ignatova, V.A.; Lebedev, O.; Muntele, C.; Gijbels, R.
Title Effect of high-frequency electromagnetic field on Te+-implanted (001) Si</tex> Type A1 Journal article
Year 2004 Publication Vacuum: the international journal and abstracting service for vacuum science and technology Abbreviated Journal Vacuum
Volume 76 Issue 2-3 Pages 325-328
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The analysis of high-frequency electromagnetic field (HFEMF) effects on the microstructure and electrical properties of Te+ implanted (0 0 1) Si is reported. Cross-sectional high-resolution transmission electron microscopy (XHRTEM) demonstrates the formation of Te nanoclusters (NCs) embedded in the Si layer amorphized by implantation (a-Si) at fluences greater than or equal to 1 x 10(16) cm(-2). Post-implantation treatment with 0.45 MHz HFEMF leads to enlargement of Te NCs, their diffusion and accumulation at the a-Si surface and formation of laterally connected extended tellurium structures above the percolation threshold, appearing at an ion fluence of 1 x 10(17) cm(-2). AC electrical conductivity measurements show nearly four orders of magnitude decrease of impedance resistivity in this case, which is in good agreement with the results of our structural studies. The results obtained are discussed in terms of the two-phase isotropic spinodal structure. (C) 2004 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000224890100048 Publication Date 2004-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-207X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.53 Times cited 2 Open Access
Notes Approved (down) Most recent IF: 1.53; 2004 IF: 0.902
Call Number UA @ lucian @ c:irua:95105 Serial 814
Permanent link to this record
 

 
Author van der Snickt, G.; Martins, A.; Delaney, J.; Janssens, K.; Zeibel, J.; Duffy, M.; McGlinchey, C.; Van Driel, B.; Dik, J.
Title Exploring a hidden painting below the surface of Rene Magritte's Le Portrait Type A1 Journal article
Year 2016 Publication Applied spectroscopy Abbreviated Journal Appl Spectrosc
Volume 70 Issue 1 Pages 57-67
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Two state-of-the-art methods for non-invasive visualization of subsurface (or overpainted) pictorial layers present in painted works of art are employed to study Le portrait, painted by Belgian artist Rene Magritte in 1935. X-ray radiography, a commonly used method for the nondestructive inspection of paintings, had revealed the presence of an underlying figurative composition, part of an earlier Magritte painting entitled La pose enchantee (1927) which originally depicted two full length nude female figures with exaggerated facial features. On the one hand, macroscopic X-ray fluorescence analysis (MA-XRF), a method capable of providing information on the distribution of the key chemical elements present in many artists' pigments, was employed. The ability of the X-rays to penetrate the upper layer of paint enabled the imaging of the facial features of the female figure and provided information on Magritte's palette for both surface and hidden composition. On the other hand, visible and near infrared hyperspectral imaging spectroscopies in transmission mode were also used, especially in the area of the table cloth in order to look through the upper representation and reveal the pictorial layer(s) below. MA-XRF provided elemental information on the pigment distributions in both the final painting and the prior whereas the transmission mode provided information related to preparatory sketches as well as revealing differences between the paints used in both compositions. These results illustrate very well the manner in which the two imaging methods complement each other, both in the sense of providing different types of information on the nature and presence of paint components/pigments and in the sense of being optimally suited to easily penetrate through different types of overpaint.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368604500007 Publication Date 2016-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-7028 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.529 Times cited 13 Open Access
Notes ; GvdS and KJ acknowledge the support of the Fund Inbev-Baillet Latour. JKD acknowledges support from the Andrew Mellon Foundation and the National Science Foundation. BvD and JD acknowledge support from The Netherlands Organisation for Scientific Research (NWO). ; Approved (down) Most recent IF: 1.529
Call Number UA @ admin @ c:irua:131544 Serial 5620
Permanent link to this record
 

 
Author Masir, M.R.; Peeters, F.M.
Title Scattering of Dirac electrons by a random array of magnetic flux tubes Type A1 Journal article
Year 2013 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
Volume 12 Issue 2 Pages 115-122
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The scattering of two-dimensional (2D) massless electrons as presented in graphene in the presence of a random array of circular magnetic flux tubes is investigated. The momentum relaxation time and the Hall factor are obtained using optical theorem techniques for scattering. Electrons with energy close to those of the Landau levels of the flux tubes exhibit resonant scattering and have a long life-time to reside inside the magnetic flux tube. These resonances appear as sharp structures in the Hall factor and the magneto-resistance.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000320044900007 Publication Date 2013-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited 2 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN and the Flemish Science Foundation (FWO-Vl). We acknowledge fruitful discussions with A. Matulis. ; Approved (down) Most recent IF: 1.526; 2013 IF: 1.372
Call Number UA @ lucian @ c:irua:109615 Serial 2950
Permanent link to this record
 

 
Author Slachmuylders, A.; Partoens, B.; Magnus, W.; Peeters, F.M.
Title The effect of dielectric mismatch on excitons and trions in cylindrical semiconductor nanowires Type A1 Journal article
Year 2008 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
Volume Issue Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000208473800066 Publication Date 2008-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited 2 Open Access
Notes Approved (down) Most recent IF: 1.526; 2008 IF: NA
Call Number UA @ lucian @ c:irua:69620 Serial 808
Permanent link to this record
 

 
Author Pourghaderi, M.A.; Magnus, W.; Sorée, B.; de Meyer, K.; Meuris, M.; Heyns, M.
Title General 2D Schrödinger-Poisson solver with open boundary conditions for nano-scale CMOS transistors Type A1 Journal article
Year 2008 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
Volume 7 Issue 4 Pages 475-484
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Employing the quantum transmitting boundary (QTB) method, we have developed a two-dimensional Schrödinger-Poisson solver in order to investigate quantum transport in nano-scale CMOS transistors subjected to open boundary conditions. In this paper we briefly describe the building blocks of the solver that was originally written to model silicon devices. Next, we explain how to extend the code to semiconducting materials such as germanium, having conduction bands with energy ellipsoids that are neither parallel nor perpendicular to the channel interfaces or even to each other. The latter introduces mixed derivatives in the 2D effective mass equation, thereby heavily complicating the implementation of open boundary conditions. We present a generalized quantum transmitting boundary method that mainly leans on the completeness of the eigenstates of the effective mass equation. Finally, we propose a new algorithm to calculate the chemical potentials of the source and drain reservoirs, taking into account their mutual interaction at high drain voltages. As an illustration, we present the potential and carrier density profiles obtained for a (111) Ge NMOS transistor as well as the ballistic current characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000209032500002 Publication Date 2008-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited 3 Open Access
Notes Approved (down) Most recent IF: 1.526; 2008 IF: NA
Call Number UA @ lucian @ c:irua:89505 Serial 1322
Permanent link to this record
 

 
Author Clima, S.; Belmonte, A.; Degraeve, R.; Fantini, A.; Goux, L.; Govoreanu, B.; Jurczak, M.; Ota, K.; Redolfi, A.; Kar, G.S.; Pourtois, G.
Title Kinetic and thermodynamic heterogeneity : an intrinsic source of variability in Cu-based RRAM memories Type A1 Journal article
Year 2017 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
Volume 16 Issue 4 Pages 1011-1016
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract <script type='text/javascript'>document.write(unpmarked('The resistive random-access memory (RRAM) device concept is close to enabling the development of a new generation of non-volatile memories, provided that their reliability issues are properly understood. The design of a RRAM operating with extrinsic defects based on metallic inclusions, also called conductive bridge RAM, allows the use of a large spectrum of solid electrolytes. However, when scaled to device dimensions that meet the requirements of the latest technological nodes, the discrete nature of the atomic structure of the materials impacts the device operation. Using density functional theory simulations, we evaluated the migration kinetics of Cu conducting species in amorphous and solid electrolyte materials, and established that atomic disorder leads to a large variability in terms of defect stability and kinetic barriers. This variability has a significant impact on the filament resistance and its dynamics, as evidenced during the formation step of the resistive filament. Also, the atomic configuration of the formed filament can age/relax to another metastable atomic configuration, and lead to a modulation of the resistivity of the filament. All these observations are qualitatively explained on the basis of the computed statistical distributions of the defect stability and on the kinetic barriers encountered in RRAM materials.'));
Address
Corporate Author Thesis
Publisher Place of Publication Place of publication unknown Editor
Language Wos 000417598100004 Publication Date 2017-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited 2 Open Access Not_Open_Access
Notes Approved (down) Most recent IF: 1.526
Call Number UA @ lucian @ c:irua:148569 Serial 4883
Permanent link to this record
 

 
Author Lemmens, H.; Czank, M.; Van Tendeloo, G.; Amelinckx, S.
Title Defect structure of the low temperature α-cristobalite phase and the cristobalite <-> tridymite transformation in (Si-Ge)O2 Type A1 Journal article
Year 2000 Publication Physics and chemistry of minerals Abbreviated Journal Phys Chem Miner
Volume 27 Issue 6 Pages 386-397
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000087959700004 Publication Date 2002-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0342-1791;1432-2021; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.521 Times cited 5 Open Access
Notes Approved (down) Most recent IF: 1.521; 2000 IF: 1.513
Call Number UA @ lucian @ c:irua:54725 Serial 622
Permanent link to this record
 

 
Author Khotkevych, V.V.; Milošević, M.V.; Bending, S.J.
Title A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK Type A1 Journal article
Year 2008 Publication The review of scientific instruments Abbreviated Journal Rev Sci Instrum
Volume 79 Issue 12 Pages 123708
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial 3He-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6×6×7 mm3 space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields 10 mG/Hz1/2. The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000262224800032 Publication Date 2008-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-6748; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.515 Times cited 14 Open Access
Notes Approved (down) Most recent IF: 1.515; 2008 IF: 1.738
Call Number UA @ lucian @ c:irua:75725 Serial 2942
Permanent link to this record
 

 
Author Rossi, E.H.M.; Van Tendeloo, G.; Rosenauer, A.
Title Influence of strain, specimen orientation and background estimation on composition evaluation of InAs/GaAs by TEM Type A1 Journal article
Year 2007 Publication Philosophical magazine Abbreviated Journal Philos Mag
Volume 87 Issue 29 Pages 4461-4473
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000249890700003 Publication Date 2007-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.505 Times cited 1 Open Access
Notes Approved (down) Most recent IF: 1.505; 2007 IF: 1.486
Call Number UA @ lucian @ c:irua:66612 Serial 1638
Permanent link to this record
 

 
Author Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Hayashi, N.; Terashima, T.; Takano, M.
Title Structure and microstructure of epitaxial SrnFenO3n-1 films Type A1 Journal article
Year 2004 Publication Philosophical magazine Abbreviated Journal Philos Mag
Volume 84 Issue 36 Pages 3825-3841
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thin films of SrFeO3-x (0 less than or equal to x less than or equal to 0.5) (SFO) grown on a (LaAlO3)(0.3) (SrAl0.5Ta0.5O3)(0.7) (LSAT) substrate by Pulsed laser deposition have been structurally investigated by electron diffraction and high resolution transmission electron microscopy for different post-deposition oxygen treatments. During the deposition and post-growth oxidation, the oxygen-reduced SFO films accept extra oxygen along the tetrahedral layers to minimize the elastic strain energy. The oxidation process stops at a concentration SFO2.875 and/or SFO2.75 because a zero misfit with the LSAT substrate is reached. A possible growth mechanism and phase transition mechanism are suggested. The non-oxidized films exhibit twin boundaries having a local perovskite-type structure with a nominal composition close to SFO3.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000225854700001 Publication Date 2005-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1478-6435;1478-6443; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.505 Times cited 4 Open Access
Notes reprint Approved (down) Most recent IF: 1.505; 2004 IF: 1.167
Call Number UA @ lucian @ c:irua:54755 Serial 3287
Permanent link to this record
 

 
Author Horzum, S.; Torun, E.; Serin, T.; Peeters, F.M.
Title Structural, electronic and optical properties of Cu-doped ZnO : experimental and theoretical investigation Type A1 Journal article
Year 2016 Publication Philosophical magazine Abbreviated Journal Philos Mag
Volume 96 Issue 96 Pages 1743-1756
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Experiments are supplemented with ab initio density functional theory (DFT) calculations in order to investigate how the structural, electronic and optical properties of zinc oxide (ZnO) thin films are modified upon Cu doping. Changes in characteristic properties of doped thin films, that are deposited on a glass substrate by sol-gel dip coating technique, are monitored using X-ray diffraction (XRD) and UV measurements. Our ab initio calculations show that the electronic structure of ZnO can be well described by DFT+U/G(0)W(0) method and we find that Cu atom substitutional doping in ZnO is the most favourable case. Our XRD measurements reveal that the crystallite size of the films decrease with increasing Cu doping. Moreover, we determine the optical constants such as refractive index, extinction coefficient, optical dielectric function and optical energy band gap values of the films by means of UV-Vis transmittance spectra. The optical band gap of ZnO the thin film linearly decreases from 3.25 to 3.20 eV at 5% doping. In addition, our calculations reveal that the electronic defect states that stem from Cu atoms are not optically active and the optical band gap is determined by the ZnO band edges. Experimentally observed structural and optical results are in good agreement with our theoretical results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000376076500002 Publication Date 2016-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1478-6435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.505 Times cited 29 Open Access
Notes ; Theoretical part of this work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. Experimental part of this work was supported by Ankara University BAP under Project Number [14B0443001]. ; Approved (down) Most recent IF: 1.505
Call Number UA @ lucian @ c:irua:134161 Serial 4254
Permanent link to this record
 

 
Author Vishwakarma, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Mehta, B.R.
Title Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films Type A1 Journal article
Year 2018 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno
Volume 18 Issue 3 Pages 1688-1695
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The presence of secondary phases is one of the main issues that hinder the growth of pure kesterite Cu2ZnSnS4 (CZTS) based thin films with suitable electronic and junction properties for efficient solar cell devices. In this work, CZTS thin films with varied Zn and Sn content have been prepared by RF-power controlled co-sputtering deposition using Cu, ZnS and SnS targets and a subsequent sulphurization step. Detailed TEM investigations show that the film shows a layered structure with the majority of the top layer being the kesterite phase. Depending on the initial thin film composition, either about ~1 μm Cu-rich and Zn-poor kesterite or stoichiometric CZTS is formed as top layer. X-ray diffraction, Raman spectroscopy and transmission electron microscopy reveal the presence of Cu2−x S, ZnS and SnO2 minor secondary phases in the form of nanoinclusions or nanoparticles or intermediate layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426033400022 Publication Date 2018-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1533-4880 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.483 Times cited Open Access Not_Open_Access
Notes Manoj Vishwakarma acknowl- edges IIT Delhi for MHRD fellowship. Professor B. R. Mehta acknowledges the support of the Schlumberger chair professorship. Manoj Vishwakarma, Joke Hadermann and Olesia M. karakulina acknowledge support provided by InsoL-DST. Manoj Vishwakarma acknowledges sup- port provided by CSIR funded projects and the support of DST-FIST Raman facility. References Approved (down) Most recent IF: 1.483
Call Number EMAT @ emat @c:irua:147505 Serial 4775
Permanent link to this record
 

 
Author Salvant, J.; Williams, J.; Ganio, M.; Casadio, F.; Daher, C.; Sutherland, K.; Monico, L.; Vanmeert, F.; De Meyer, S.; Janssens, K.; Cartwright, C.; Walton, M.
Title A Roman Egyptian Painting Workshop : technical investigation of the portraits from Tebtunis, Egypt Type A1 Journal article
Year 2018 Publication Archaeometry Abbreviated Journal Archaeometry
Volume 60 Issue 4 Pages 815-833
Keywords A1 Journal article; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Roman-period mummy portraits are considered to be ancient antecedents of modern portraiture. However, the techniques and materials used in their manufacture are not thoroughly understood. Analytical study of the pigments as well as the binding materials helps to address questions on what aspects of the painting practices originate from Pharaonic and/or Graeco-Roman traditions, and can aid in determining the provenance of the raw materials from potential locations across the ancient Mediterranean and European worlds. Here, one of the largest assemblages of mummy portraits to remain intact since their excavation from the site of Tebtunis in Egypt was examined using multiple analytical techniques to address how they were made. The archaeological evidence suggests that these portraits were products of a single workshop and, correspondingly, they are found to be made using similar techniques and materials: wax-based and lead white-rich paint combined with a variety of iron-based pigments (including hematite, goethite and jarosite), as well as Egyptian blue, minium, indigo and madder lake to create subtle variations and tones.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000438195100011 Publication Date 2017-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-813x; 1475-4754 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.47 Times cited 6 Open Access
Notes ; This collaborative initiative is part of NU-ACCESS's broad portfolio of activities, made possible by generous support of the Andrew W. Mellon Foundation as well as supplemental support provided by the Materials Research Center, the Office of the Vice President for Research, the McCormick School of Engineering and Applied Science and the Department of Materials Science and Engineering at Northwestern University. This work made use of the Keck-II facility of the NUANCE Center at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. Part of this research was carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF), and at ESRF (experiment no. HG-79). We are grateful to Marine Cotte and Wout De Nolf for their support during the experiment at beamline ID21. We would like to thank Gerald Falkenberg and Jan Garrevoet for their assistance in using beamline P06. ; Approved (down) Most recent IF: 1.47
Call Number UA @ admin @ c:irua:152396 Serial 5455
Permanent link to this record
 

 
Author Hai, G.-Q.; Peeters, F.M.
Title Hamiltonian of a many-electron system with single-electron and electron-pair states in a two-dimensional periodic potential Type A1 Journal article
Year 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 88 Issue 88 Pages 20
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Based on the metastable electron-pair energy band in a two-dimensional (2D) periodic potential obtained previously by Hai and Castelano [J. Phys.: Condens. Matter 26, 115502 (2014)], we present in this work a Hamiltonian of many electrons consisting of single electrons and electron pairs in the 2D system. The electron-pair states are metastable of energies higher than those of the single-electron states at low electron density. We assume two different scenarios for the single-electron band. When it is considered as the lowest conduction band of a crystal, we compare the obtained Hamiltonian with the phenomenological model Hamiltonian of a boson-fermion mixture proposed by Friedberg and Lee [Phys. Rev. B 40, 6745 (1989)]. Single-electron-electron-pair and electron-pair-electron-pair interaction terms appear in our Hamiltonian and the interaction potentials can be determined from the electron-electron Coulomb interactions. When we consider the single-electron band as the highest valence band of a crystal, we show that holes in this valence band are important for stabilization of the electron-pair states in the system.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000347776800005 Publication Date 2015-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 2 Open Access
Notes ; This work was supported by FAPESP and CNPq (Brazil). ; Approved (down) Most recent IF: 1.461; 2015 IF: 1.345
Call Number c:irua:125317 Serial 1406
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.; Kusmartsev, F.V.; Peeters, F.M.
Title Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current Type A1 Journal article
Year 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 88 Issue 88 Pages 286
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a “superradiant” vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000363960900002 Publication Date 2015-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 1 Open Access
Notes ; This work was supported by EU Marie Curie (Project No. 253057). ; Approved (down) Most recent IF: 1.461; 2015 IF: 1.345
Call Number UA @ lucian @ c:irua:129509 Serial 4166
Permanent link to this record
 

 
Author Berdiyorov, G.R.; de Romaguera, A.R.C.; Milošević, M.V.; Doria, M.M.; Covaci, L.; Peeters, F.M.
Title Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links Type A1 Journal article
Year 2012 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 85 Issue 4 Pages 130-130,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Static and dynamic properties of superconducting vortices in a superconducting stripe with a periodic array of weakly-superconducting (or normal metal) regions are studied in the presence of external magnetic and electric fields. The time-dependent Ginzburg-Landau theory is used to describe the electronic transport, where the anisotropy is included through the spatially-dependent critical temperature T-c. Superconducting vortices penetrating into the weak-superconducting region with smaller T-c are more mobile than the ones in the strong superconducting regions. We observe periodic entrance and exit of vortices which reside in the weak link for some short interval. The mobility of the weakly-pinned vortices can be reduced by increasing the uniform applied magnetic field leading to distinct features in the voltage vs. magnetic field response of the system.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000303545400013 Publication Date 2012-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 32 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral programme between Flanders and Brazil. G.R.B. and L.C. acknowledge individual support from FWO-Vl. A.R.de C.R. acknowledges CNPq and FACEPE for financial support. ; Approved (down) Most recent IF: 1.461; 2012 IF: 1.282
Call Number UA @ lucian @ c:irua:98267 Serial 761
Permanent link to this record
 

 
Author Cantoro, M.; Klekachev, A.V.; Nourbakhsh, A.; Sorée, B.; Heyns, M.M.; de Gendt, S.
Title Long-wavelength, confined optical phonons in InAs nanowires probed by Raman spectroscopy Type A1 Journal article
Year 2011 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 79 Issue 4 Pages 423-428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Strongly confined nano-systems, such as one-dimensional nanowires, feature deviations in their structural, electronic and optical properties from the corresponding bulk. In this work, we investigate the behavior of long-wavelength, optical phonons in vertical arrays of InAs nanowires by Raman spectroscopy. We attribute the main changes in the spectral features to thermal anharmonicity, due to temperature effects, and rule out the contribution of quantum confinement and Fano resonances. We also observe the appearance of surface optical modes, whose details allow for a quantitative, independent estimation of the nanowire diameter. The results shed light onto the mechanisms of lineshape change in low-dimensional InAs nanostructures, and are useful to help tailoring their electronic and vibrational properties for novel functionalities.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000288120600005 Publication Date 2011-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 10 Open Access
Notes ; ; Approved (down) Most recent IF: 1.461; 2011 IF: 1.534
Call Number UA @ lucian @ c:irua:89502 Serial 1841
Permanent link to this record
 

 
Author Yang, W.; Nelissen, K.; Kong, M.H.; Li, Y.T.; Tian, Y.M.
Title Melting properties of two-dimensional multi-species colloidal systems in a parabolic trap Type A1 Journal article
Year 2011 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 83 Issue 4 Pages 499-505
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The angular and radial melting properties of two-dimensional classical systems consisting of different types of particles confined in a parabolic trap are studied through modified Monte Carlo simulations. A universal behavior of the angular melting process is found, which occurs in multiple steps due to shell depended melting temperatures. The melting sequence of the different shells is determined by two major factors: (1) the confinement strength which each shell is subjected to, and (2) the specific structure of each shell. Further, a continuous radial disordering of the particle types forming a single circular shell is found and analyzed. This phenomenon has never been observed before in two-dimensional mono-dispersive systems. This continuous radial disordering results from the high energy barrier between different particle types in multi-species systems.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000296633700013 Publication Date 2011-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 2 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. 11047111, the Major State Basic Research Development Program of China (973) under Grant No. 2009CB724201, the Key Science and Technology Program of Shanxi Province of China under Grant No. 20090321085, the Doctors' Initial Foundation of Taiyuan University of Science and Technology under Grant No. 20092010, the Youth Foundation of Taiyuan University of Science and Technology under Grant No. 20113020, the FWO-Vl (Belgium) and CNPq (Brazil). Part of the calculations were carried out using the CalcUA core facility of Universiteit Antwerpen (Belgium), a division of Flemish Supercomputer Center VSC, and in the Center for Computational Science of CASHIPS (China). ; Approved (down) Most recent IF: 1.461; 2011 IF: 1.534
Call Number UA @ lucian @ c:irua:93589 Serial 1989
Permanent link to this record
 

 
Author Willems, B.L.; Taylor, D.M.J.; Fritzsche, J.; Malfait, M.; Vanacken, J.; Moshchalkov, V.V.; Montoya, E.; Van Tendeloo, G.
Title Temperature and magnetic field dependence of the voltagein GaAs films with superconducting Ga grains Type A1 Journal article
Year 2008 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 66 Issue 1 Pages 25-28
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have studied granular films consisting of nanoscale Ga droplets formed on GaAs films via a method of vacuum annealing to promote As evaporation. For temperatures and magnetic fields below the bulk Ga critical parameters, the samples are very sensitive towards external microwave radiation when two point voltage measurements are performed. Together with the observation of an oscillating magnetic field dependence of the voltage, a scenario in which the samples consist of Josephson-coupled loops seems to be the most likely one for explaining the obtained results.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000262831300004 Publication Date 2008-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record
Impact Factor 1.461 Times cited Open Access
Notes Approved (down) Most recent IF: 1.461; 2008 IF: 1.568
Call Number UA @ lucian @ c:irua:75997 Serial 3496
Permanent link to this record
 

 
Author Betouras, J.J.; Ivanov, V.A.; Peeters, F.M.
Title Ginzburg-Landau theory and effects of pressure on a two-band superconductor : application to MgB2 Type A1 Journal article
Year 2003 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 31 Issue 3 Pages 349-354
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a model of pressure effects of a two-band superconductor based on a Ginzburg-Landau free energy with two order parameters. The parameters of the theory are pressure as well as temperature dependent. New pressure effects emerge as a result of the competition between the two bands. The theory then is applied to MgB2. We identify two possible scenaria regarding the fate of the two Q subbands under pressure, depending on whether or not both subbands are above the Fermi energy at ambient pressure. The splitting of the two subbands is probably caused by the E-2g, distortion. If only one subband is above the Fermi energy at ambient pressure (scenario I), application of pressure diminishes the splitting and it is possible that the lower subband participates in the superconductivity. The corresponding crossover pressure and Gruneisen parameter are estimated. In the second scenario both bands start above the Fermi energy and they move below it, either by pressure or via the substitution of Mg by Al. In both scenaria, the possibility of electronical topological transition is emphasized. Experimental signatures of both scenaria are presented and existing experiments are discussed in the light of the different physical pictures.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000181614300008 Publication Date 2004-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 10 Open Access
Notes Approved (down) Most recent IF: 1.461; 2003 IF: 1.457
Call Number UA @ lucian @ c:irua:94859 Serial 1343
Permanent link to this record
 

 
Author Dikin, D.A.; Chandrasekhar, V.; Misko, V.R.; Fomin, V.M.; Devreese, J.T.
Title Nucleation of superconductivity in mesoscopic star-shaped superconductors Type A1 Journal article
Year 2003 Publication European Physical Journal B Abbreviated Journal Eur Phys J B
Volume 34 Issue Pages 231-235
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000184935400012 Publication Date 2004-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 5 Open Access
Notes Approved (down) Most recent IF: 1.461; 2003 IF: 1.457
Call Number UA @ lucian @ c:irua:44286 Serial 2390
Permanent link to this record
 

 
Author Michel, A.; Pierron-Bohnes, V.; Jay, J.P.; Panissod, P.; Lefebvre, S.; Bessière, M.; Fischer, H.E.; Van Tendeloo, G.
Title Stabilisation of fcc cobalt layers by 0.4 nm thick manganese layers in Co/Mn superlattices Type A1 Journal article
Year 2001 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 19 Issue 2 Pages 225-239
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000167425800008 Publication Date 2003-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 8 Open Access
Notes Approved (down) Most recent IF: 1.461; 2001 IF: 1.811
Call Number UA @ lucian @ c:irua:54779 Serial 3116
Permanent link to this record
 

 
Author Hervieu, M.; Martin, C.; Maignan, A.; Van Tendeloo, G.; Raveau, B.
Title Charge ordering-disordering in Th-doped CaMnO3 Type A1 Journal article
Year 1999 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 10 Issue Pages 397-408
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000082579200001 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 6 Open Access
Notes Approved (down) Most recent IF: 1.461; 1999 IF: 1.705
Call Number UA @ lucian @ c:irua:29718 Serial 337
Permanent link to this record
 

 
Author Klimin, S.N.; Tempère, J.; Misko, V.R.; Wouters, M.
Title Finite-temperature Wigner solid and other phases of ripplonic polarons on a helium film Type A1 Journal article
Year 2016 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume 89 Issue 89 Pages 172
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract Electrons on liquid helium can form different phases depending on density, and temperature. Also the electron-ripplon coupling strength influences the phase diagram, through the formation of so-called “ripplonic polarons”, that change how electrons are localized, and that shifts the transition between the Wigner solid and the liquid phase. We use an all-coupling, finite-temperature variational method to study the formation of a ripplopolaron Wigner solid on a liquid helium film for different regimes of the electron-ripplon coupling strength. In addition to the three known phases of the ripplopolaron system (electron Wigner solid, polaron Wigner solid, and electron fluid), we define and identify a fourth distinct phase, the ripplopolaron liquid. We analyse the transitions between these four phases and calculate the corresponding phase diagrams. This reveals a reentrant melting of the electron solid as a function of temperature. The calculated regions of existence of the Wigner solid are in agreement with recent experimental data.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000391225200001 Publication Date 2016-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 1 Open Access
Notes ; We thank A.S. Mishchenko and D.G. Rees for valuable discussions. This research has been supported by the Flemish Research Foundation (FWO-Vl), Project Nos. G.0115.12N, G.0119.12N, G.0122.12N, G.0429.15N, by the Scientific Research Network of the Research Foundation-Flanders, WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved (down) Most recent IF: 1.461
Call Number UA @ lucian @ c:irua:140351 Serial 4454
Permanent link to this record
 

 
Author Quintelier, M.; Perkisas, T.; Poppe, R.; Batuk, M.; Hendrickx, M.; Hadermann, J.
Title Determination of spinel content in cycled Li1.2Ni0.13Mn0.54Co0.13O2 using three-dimensional electron diffraction and precession electron diffraction Type A1 Journal article
Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 13 Issue 11 Pages 1989-17
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Among lithium battery cathode materials, Li1.2Ni0.13Mn0.54Co0.13O2 (LR-NMC) has a high theoretical capacity, but suffers from voltage and capacity fade during cycling. This is partially ascribed to transition metal cation migration, which involves the local transformation of the honeycomb layered structure to spinel-like nano-domains. Determination of the honeycomb layered/spinel phase ratio from powder X-ray diffraction data is hindered by the nanoscale of the functional material and the domains, diverse types of twinning, stacking faults, and the possible presence of the rock salt phase. Determining the phase ratio from transmission electron microscopy imaging can only be done for thin regions near the surfaces of the crystals, and the intense beam that is needed for imaging induces the same transformation to spinel as cycling does. In this article, it is demonstrated that the low electron dose sufficient for electron diffraction allows the collection of data without inducing a phase transformation. Using calculated electron diffraction patterns, we demonstrate that it is possible to determine the volume ratio of the different phases in the particles using a pair-wise comparison of the intensities of the reflections. Using this method, the volume ratio of spinel structure to honeycomb layered structure is determined for a submicron sized crystal from experimental three-dimensional electron diffraction (3D ED) and precession electron diffraction (PED) data. Both twinning and the possible presence of the rock salt phase are taken into account. After 150 charge-discharge cycles, 4% of the volume in LR-NMC particles was transformed irreversibly from the honeycomb layered structure to the spinel structure. The proposed method would be applicable to other multi-phase materials as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000815310500001 Publication Date 2021-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.457 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 1.457
Call Number UA @ admin @ c:irua:189468 Serial 7080
Permanent link to this record