toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Benedet, M.; Andrea Rizzi, G.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Maccato, C.; Barreca, D. pdf  url
doi  openurl
  Title Functionalization of graphitic carbon nitride systems by cobalt and cobalt-iron oxides boosts solar water oxidation performances Type A1 Journal article
  Year 2023 Publication Applied surface science Abbreviated Journal  
  Volume 618 Issue Pages 156652  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The ever-increasing energy demand from the world population has made the intensive use of fossil fuels an overarching threat to global environment and human health. An appealing alternative is offered by sunlight-assisted photoelectrochemical water splitting to yield carbon-free hydrogen fuel, but kinetic limitations associated to the oxygen evolution reaction (OER) render the development of cost-effective, eco-friendly and stable electrocatalysts an imperative issue. In the present work, OER catalysts based on graphitic carbon nitride (g-C3N4) were deposited on conducting glass substrates by a simple decantation procedure, followed by functionalization with low amounts of nanostructured CoO and CoFe2O4 by radio frequency (RF)-sputtering, and final annealing under inert atmosphere. A combination of advanced characterization tools was used to investigate the interplay between material features and electrochemical performances. The obtained results highlighted the formation of a p-n junction for the g-C3N4-CoO system, whereas a Z-scheme junction accounted for the remarkable performance enhancement yielded by g-C3N4-CoFe2O4. The intimate contact between the system components also afforded an improved electrocatalyst stability in comparison to various bare and functionalized g-C3N4-based systems. These findings emphasize the importance of tailoring g-C3N4 chemico-physical properties through the dispersion of complementary catalysts to fully exploit its applicative potential.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000950654300001 Publication Date 2023-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 11 Open Access OpenAccess  
  Notes The authors gratefully acknowledge financial support from CNR (Progetti di Ricerca @CNR – avviso 2020 – ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO – NANOMAT, INSTM21PDBARMAC – ATENA) and the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. The FWO-Hercules fund G0H4316N 'Direct electron detector for soft matter TEM' is also acknowledged. Many thanks are due to Prof. Luca Gavioli (Università Cattolica del Sacro Cuore, Brescia, Italy) and Dr. Riccardo Lorenzin (Department of Chemical Sciences, Padova University, Italy) for their invaluable technical support.; esteem3reported; esteem3TA Approved (up) Most recent IF: 6.7; 2023 IF: 3.387  
  Call Number EMAT @ emat @c:irua:196150 Serial 7376  
Permanent link to this record
 

 
Author Frangis, N.; Van Tendeloo, G.; van Landuyt, J.; Muret, P.; Nguyen, T.T.A. doi  openurl
  Title Electron microscopy characterisation of erbium silicide-thin films grown on a Si(111) substrate Type A1 Journal article
  Year 1996 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 102 Issue Pages 163-168  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996VJ86100037 Publication Date 2003-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.711 Times cited 9 Open Access  
  Notes Approved (up) no  
  Call Number UA @ lucian @ c:irua:15458 Serial 953  
Permanent link to this record
 

 
Author Kaltsas, G.; Travlos, A.; Nassiopoulos, A.G.; Frangis, N.; van Landuyt, J. doi  openurl
  Title High crystalline quality erbium silicide films on (100) silicon grown in high vacuum Type A1 Journal article
  Year 1996 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 102 Issue Pages 151-155  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996VJ86100034 Publication Date 2003-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.711 Times cited 14 Open Access  
  Notes Approved (up) no  
  Call Number UA @ lucian @ c:irua:15459 Serial 1423  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Karki, P.; Sevik, C.; Cakir, D. doi  openurl
  Title Electronic and mechanical properties of stiff rhenium carbide monolayers: A first-principles investigation Type A1 Journal article
  Year 2018 Publication Applied surface science Abbreviated Journal  
  Volume 458 Issue Pages 762-768  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, we predicted two new stable metallic Re-C based monolayer structures with a rectangular (r-ReC2) and a hexagonal (h-Re2C) crystal symmetry using first-principle calculations based on density functional theory. Our results obtained from mechanical and phonon calculations and high-temperature molecular dynamic simulations clearly proved the stability of these two-dimensional (2D) crystals. Interestingly, Re-C monolayers in common transition metal carbide structures (i.e. MXenes) were found to be unstable, contrary to expectations. We found that the stable structures, i.e. r-ReC2 and h-Re2C, display superior mechanical properties over the well-known 2D materials. The Young's modulus for r-ReC2 and h-Re2C are extremely high and were calculated as 351 (1310) and 617 (804) N/m (GPa), respectively. Both materials have larger Young's modulus values than the most of the well-known 2D materials. We showed that the combination of the short strong directional p-d bonds, the high coordination number of atoms in the unit-cell and high valence electron density result in strong mechanical properties. Due to its crystal structure, the r-ReC2 monolayer has anisotropic mechanical properties and the crystallographic direction parallel to the C-2 dimers is stiffer compared to perpendicular direction due to strong covalent bonding within C-2 dimers. h-Re2C was derived from the corresponding bulk structure for which we determined the critical thickness for the dynamically stable bulk-derived monolayer structures. In addition, we also investigated the electronic of these two stable structures. Both exhibit metallic behavior and Re-5d orbitals dominate the states around the Fermi level. Due to their ultra high mechanical stability and stiffness, these novel Re-C monolayers can be exploited in various engineering applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441400000088 Publication Date 2018-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved (up) no  
  Call Number UA @ admin @ c:irua:193776 Serial 7875  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: