|   | 
Details
   web
Records
Author Verberck, B.; Partoens, B.; Peeters, F.M.; Trauzettel, B.
Title Strain-induced band gaps in bilayer graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 12 Pages 125403-125403,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a tight-binding investigation of strained bilayer graphene within linear elasticity theory, focusing on the different environments experienced by the A and B carbon atoms of the different sublattices. We find that the inequivalence of the A and B atoms is enhanced by the application of perpendicular strain epsilon(zz), which provides a physical mechanism for opening a band gap, most effectively obtained when pulling the two graphene layers apart. In addition, perpendicular strain introduces electron-hole asymmetry and can result in linear electronic dispersion near the K point. Our findings suggest experimental means for strain-engineered band gaps in bilayer graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301113200005 Publication Date 2012-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 53 Open Access
Notes ; The authors would like to acknowledge O. Leenaerts, E. Mariani, K. H. Michel, and J. Schelter for useful discussions. B. V. was financially supported by the Flemish Science Foundation (FWO-Vl). This work was financially supported by the ESF program EuroGraphene under projects CONGRAN and ENTS as well as by the DFG. ; Approved (up) Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97181 Serial 3168
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B.
Title Theory of rigid-plane phonon modes in layered crystals Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 9 Pages 094303-094303,11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The lattice dynamics of low-frequency rigid-plane modes in metallic (graphene multilayers, GML) and in insulating (hexagonal boron-nitride multilayers, BNML) layered crystals is investigated. The frequencies of shearing and compression (stretching) modes depend on the layer number N and are presented in the form of fan diagrams. The results for GML and BNML are very similar. In both cases, only the interactions (van der Waals and Coulomb) between nearest-neighbor planes are effective, while the interactions between more distant planes are screened. A comparison with recent Raman scattering results on low-frequency shear modes in GML [Tan et al., Nat. Mater., in press, doi: 10.1038/nmat3245, (2012)] is made. Relations with the low-lying rigid-plane phonon dispersions in the bulk materials are established. Master curves, which connect the fan diagram frequencies for any given N, are derived. Static and dynamic thermal correlation functions for rigid-layer shear and compression modes are calculated. The results might be of use for the interpretation of friction force experiments on multilayer crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301646000006 Publication Date 2012-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes ; The authors are indebted to J. Maultzsch for bringing Ref. 20 to their attention. They thank D. Lamoen, F.M. Peeters, B. Trauzettel, and C. Van Haesendonck for useful discussions. This work has been financially supported by the Research Foundation Flanders (FWO). ; Approved (up) Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97787 Serial 3619
Permanent link to this record
 

 
Author Tyutyunnik, A.P.; Slobodin, B.V.; Samigullina, R.F.; Verberck, B.; Tarakina, N.V.
Title K2CaV2O7 : a pyrovanadate with a new layered type of structure in the A2BV2O7 family Type A1 Journal article
Year 2013 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
Volume 42 Issue 4 Pages 1057-1064
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The crystal structure of K2CaV2O7 prepared by a conventional solid-state reaction has been solved by a direct method and refined using Rietveld full profile fitting based on X-ray powder diffraction data. This compound crystallises in the triclinic space group (P (1) over bar, Z = 2) with unit cell constants a = 7.1577(1) angstrom, b = 10.5104(2) angstrom, c = 5.8187(1) angstrom, alpha = 106.3368(9)degrees, beta = 106.235(1)degrees, gamma = 71.1375(9)degrees. The structure can be described as infinite undulating CaV2O72- layers parallel to the ac plane, which consist of pairs of edge-sharing CaO6 octahedra connected to each other through V2O7 pyrogroups. The potassium atoms are positioned in two sites between the layers, with a distorted IX-fold coordination of oxygen atoms. The chemical composition obtained from the structural solution was confirmed by energy-dispersive X-ray analysis. The stability of compounds in the family of alkali metal calcium pyrovanadates is discussed based on an analysis of the correlation between anion and cation sizes and theoretical first-principles calculations.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000312659200030 Publication Date 2012-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited 3 Open Access
Notes ; N.V.T. acknowledges funding by the Bavarian Ministry of Sciences, Research and the Arts. B. V. was financially supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved (up) Most recent IF: 4.029; 2013 IF: 4.097
Call Number UA @ lucian @ c:irua:105945 Serial 3536
Permanent link to this record
 

 
Author Verberck, B.; Okazaki, T.; Tarakina, N.V.
Title Ordered and disordered packing of coronene molecules in carbon nanotubes Type A1 Journal article
Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 15 Issue 41 Pages 18108-18114
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Monte Carlo simulations of coronene molecules in single-walled carbon nanotubes (SWCNTs) and dicoronylene molecules in SWCNTs are performed. Depending on the diameter D of the encapsulating SWCNT, regimes favoring the formation of ordered, one-dimensional (1D) stacks of tilted molecules (D <= 1.7 nm for coronene@SWCNT, 1.5 nm <= D <= 1.7 nm for dicoronylene@SWCNT) and regimes with disordered molecular arrangements and increased translational mobilities enabling the thermally induced polymerization of neighboring molecules resulting in the formation of graphene nanoribbons (GNRs) are observed. The results show that the diameter of the encapsulating nanotube is a crucial parameter for the controlled synthesis of either highly ordered 1D structures or GNR precursors.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000325400600045 Publication Date 2013-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 9 Open Access
Notes ; B.V. is a Postdoctoral Fellow of the Research Foundation Flanders (FWO-VI). N.V.T. acknowledges funding by the Bavarian Ministry of Sciences, Research and the Arts. ; Approved (up) Most recent IF: 4.123; 2013 IF: 4.198
Call Number UA @ lucian @ c:irua:112212 Serial 2502
Permanent link to this record
 

 
Author Launois, P.; Chorro, M.; Verberck, B.; Albouy, P.-A.; Rouzière, S.; Colson, D.; Forget, A.; Noé, L.; Kataura, H.; Monthioux, M.; Cambedouzou, J.
Title Transformation of C70 peapods into double walled carbon nanotubes Type A1 Journal article
Year 2010 Publication Carbon Abbreviated Journal Carbon
Volume 48 Issue 1 Pages 89-98
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract X-ray diffraction studies comparing the transformation of C(60) and C(70) peapods into double walled carbon nanotubes are presented. The structures of the as-formed DWCNTs are strikingly similar, showing that they are not dependent on the nature of the fullerene precursor. High temperature X-ray diffraction measurements of C(70) peapods below the coalescence temperature show that confined C(70) molecules in large tubes undergo an orientational. transition to free rotations. Fast re-orientations of C(70) molecules allow cyclo-addition between adjacent fullerenes to form, in good agreement with the mechanism of coalescence proposed in the literature for C(60) molecules. (C) 2009 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000272018800012 Publication Date 2009-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 27 Open Access
Notes ; ; Approved (up) Most recent IF: 6.337; 2010 IF: 4.896
Call Number UA @ lucian @ c:irua:94389 Serial 3696
Permanent link to this record
 

 
Author Verberck, B.; Cambedouzou, J.; Vliegenthart, G.A.; Gompper, G.; Launois, P.
Title A Monte Carlo study of C70 molecular motion in C70@SWCNT peapods Type A1 Journal article
Year 2011 Publication Carbon Abbreviated Journal Carbon
Volume 49 Issue 6 Pages 2007-2021
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present Monte Carlo simulations of chains of C70 molecules encapsulated in a single-walled carbon nanotube (SWCNT). For various tube radii R (6.5 Å less-than-or-equals, slant R less-than-or-equals, slant 7.5 Å), we analyze rotational and translational motion of the C70 molecules, as a function of temperature. Apart from reproducing the experimentally well-established lying and standing molecular orientations for small and large tube radii, respectively, we observe, depending on the tube diameter, a variety of molecular motions, orientational flipping of lying molecules, and the migration of molecules resulting in a continual rearrangement of the C70 molecules in clusters of varying lengths. With increasing temperature, the evolution of the pair correlation functions reveals a transition from linear harmonic chain behavior to a hard-sphere liquid, making C70@SWCNT peapods tunable physical realizations of two well-known one-dimensional model systems.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000288689900025 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 10 Open Access
Notes ; Helpful discussions with K.H. Michel, P.-A. Albouy and C. Bousige are greatly acknowledged. This work was financially supported by the Research Foundation – Flanders (FWO-Vl). B.V. is a Postdoctoral Fellow of the Research Foundation Flanders (FWO-VI). ; Approved (up) Most recent IF: 6.337; 2011 IF: 5.378
Call Number UA @ lucian @ c:irua:89660 Serial 2201
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B.; Nikolaev, A.V.
Title Anisotropic packing and one-dimensional fluctuations of C60 molecules in carbon nanotubes Type A1 Journal article
Year 2005 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 95 Issue 18 Pages 185506-185506,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The confinement of a C-60 molecule encapsulated in a cylindrical nanotube depends on the tube radius. In small tubes with radius R-T less than or similar to 7 A, a fivefold axis of the molecule coincides with the tube axis. The interaction between C-60 molecules in the nanotube is then described by a O-2-rotor model on a 1D liquid chain with coupling between orientational and displacive correlations. This coupling leads to chain contraction. The structure factor of the 1D liquid is derived. In tubes with a larger radius the molecular centers of mass are displaced off the tube axis. The distinction of two groups of peapods with on- and off-axis molecules suggests an explanation of the apparent splitting of A(g) modes of C-60 in nanotubes measured by resonant Raman scattering.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000232887400041 Publication Date 2005-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 40 Open Access
Notes Approved (up) Most recent IF: 8.462; 2005 IF: 7.489
Call Number UA @ lucian @ c:irua:94717 Serial 127
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B.; Nikolaev, A.
Title Mercator maps of orientations of a C60 molecule in single-walled nanotubes with distinct radii Type A1 Journal article
Year 2005 Publication AIP conference proceedings Abbreviated Journal
Volume 786 Issue Pages 69-72
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the confinement of a C-60 molecule encapsulated in a cylindrical nanotube as a function of the tube radius. Drawing the Mercator maps of the potential, we find two distinct molecular orientations; for tubes with small radii, R-T less than or similar to 7 angstrom, a fivefold axis of the molecule coincides with the tube long axis, for larger radii, R-T less than or similar to 8 angstrom, a threefold axis of the molecule coincides with the tube long axis. These different orientations are caused by the relative importance of the repulsive and the attractive parts of the van der Waals potentials of the molecule with the tube wall for small and large tubes respectively. Experimental evidence is provided by the apparent splitting of A(g) modes of the C-60 molecule in resonant Raman scattering.
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-243x ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:94738 Serial 1993
Permanent link to this record
 

 
Author Verberck, B.; Nikolaev, A.V.; Michel, K.H.
Title Orientational charge density waves and the metal-insulator transition in polymerized KC60 Type A1 Journal article
Year 2004 Publication AIP conference proceedings Abbreviated Journal
Volume 723 Issue Pages 339-342
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Polymerized KC60 undergoes a structural phase transition accompanied by a metal-insulator transition around 50 K. To explain the structural aspect, a mechanism involving small orientational deviations of the valence electron density on every C-60 monomer orientational charge density waves (OCDWs) – has already been proposed earlier. In the present work, we address the metal-insulator transition using the OCDW concept. We are inspired by the analogy between a polymer chain exhibiting an OCDW and a linear atomic chain undergoing a static lattice deformation doubling the unit cell: such a deformation implies a band gap at the zone boundary, yielding an insulating state (Peierls instability). Within our view, a similar mechanism occurs in polymerized KC60; the OCDW plays the role of the lattice deformation. We present tight-binding band structure calculations and conclude that the metal-insulator transition can indeed be explained using OCDWs, but that the threedimensionality of the crystal plays an unexpected key role.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-243x ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:94831 Serial 2513
Permanent link to this record
 

 
Author Michel, K.H.; Nikolaev, A.V.; Verberck, B.
Title Theory of crystal structures of polymerized C60-fullerite and fullerides AC60, A=K, Rb, Cs Type H1 Book chapter
Year 2001 Publication Abbreviated Journal
Volume Issue Pages
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume 462-465 Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ lucian @ c:irua:36883 Serial 3614
Permanent link to this record