|   | 
Details
   web
Records
Author Akkerman, Q.A.; Bladt, E.; Petralanda, U.; Dang, Z.; Sartori, E.; Baranov, D.; Abdelhady, A.L.; Infante, I.; Bals, S.; Manna, L.
Title Fully inorganic Ruddlesden-Popper double CI-I and triple CI-Br-I lead halide perovskite nanocrystals Type A1 Journal article
Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 31 Issue 31 Pages 2182-2190
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The vast majority of lead halide perovskite (LHP) nanocrystals (NCs) are currently based on either a single halide composition (CsPbCl3, CsPbBr3, and CsPbI3) or an alloyed mixture of bromide with either Cl- or I- [i.e., CsPb(Br:Cl)(3) or CsPb(Br:I)(3)]. In this work, we present the synthesis as well as a detailed optical and structural study of two halide alloying cases that have not previously been reported for LHP NCs: Cs2PbI2Cl2 NCs and triple halide CsPb(Cl:Br:I)(3) NCs. In the case of Cs2PbI2Cl2, we observe for the first time NCs with a fully inorganic Ruddlesden-Popper phase (RPP) crystal structure. Unlike the well-explored organic-inorganic RPP, here, the RPP formation is triggered by the size difference between the halide ions. These NCs exhibit a strong excitonic absorption, albeit with a weak photoluminescence quantum yield (PLQY). In the case of the triple halide CsPb(Cl:Br:I)(3) composition, the NCs comprise a CsPbBr2Cl perovskite crystal lattice with only a small amount of incorporated iodide, which segregates at RPP planes' interfaces within the CsPb(Cl:Br:I)(3) NCs. Supported by density functional theory calculations and postsynthetic surface treatments to enhance the PLQY, we show that the combination of iodide segregation and defective RPP interfaces are most likely linked to the strong PL quenching observed in these nanostructures. In summary, this work demonstrates the limits of halide alloying in LHP NCs because a mixture that contains halide ions of very different sizes leads to the formation of defective RPP interfaces and a severe quenching of LHP NC's optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462950400038 Publication Date 2019-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 58 Open Access OpenAccess
Notes ; Q.A.A. and L.M. acknowledge funding from the European Union Seventh Framework Programme under grant agreement no. 614897 (ERC Consolidator Grant “TRANS-NANO”). The work of D.B. was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 794560. E.B. and S.B. acknowledge funding from the Research Foundation Flanders (G.038116N, G.03691, and funding of a postdoctoral grant to E.B.). I.I. acknowledges The Netherlands Organization of Scientific Research (NWO) for financial support through the Innovational Research Incentive (Vidi) Scheme (grant no. 723.013.002). The computational work was carried out on the Dutch national e-infrastructure with the support of the SURF Cooperative. ; Approved (up) Most recent IF: 9.466
Call Number UA @ admin @ c:irua:159414 Serial 5250
Permanent link to this record
 

 
Author Tan, X.; Stephens, P.W.; Hendrickx, M.; Hadermann, J.; Segre, C.U.; Croft, M.; Kang, C.-J.; Deng, Z.; Lapidus, S.H.; Kim, S.W.; Jin, C.; Kotliar, G.; Greenblatt, M.
Title Tetragonal Cs1.17In0.81Cl3 : a charge-ordered indium halide perovskite derivative Type A1 Journal article
Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 31 Issue 6 Pages 1981-1989
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline samples of Cs1.17In0.81Cl3 were prepared by annealing a mixture of CsCl, InCl, and InCl3, stoichiometric for the targeted CsInCl3. Synchrotron powder X-ray diffraction refinement and chemical analysis by energy dispersive X-ray indicated that Cs1.17In0.81Cl3, a tetragonal distorted perovskite derivative (I4/m), is the thermodynamically stable product. The refined unit cell parameters and space group were confirmed by electron diffraction. In the tetragonal structure, In+ and In3+ are located in four different crystallographic sites, consistent with their corresponding bond lengths. In1, In2, and In3 are octahedrally coordinated, whereas In4 is at the center of a pentagonal bipyramid of Cl because of the noncooperative octahedral tilting of In4Cl6. The charged-ordered In+ and In3+ were also confirmed by X-ray absorption and Raman spectroscopy. Cs1.17In0.81Cl3 is the first example of an inorganic halide double perovskite derivative with charged-ordered In+ and In3+. Band structure and optical conductivity calculations were carried out with both generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) approach; the GGA calculations estimated the band gap and optical band gap to be 2.27 eV and 2.4 eV, respectively. The large and indirect band gap suggests that Cs1.17In0.81Cl3 is not a good candidate for photovoltaic application.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462950400017 Publication Date 2019-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access OpenAccess
Notes ; M.G. and X.T. were supported by the Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant No. DE-FOA-0001276. M.G. also acknowledges support of NSF-DMR-1507252 grant. G.K. and C.-J.K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. The use of the Advanced Photon Source at the Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The works at IOPCAS were supported by NSF & MOST of China through research projects. ; Approved (up) Most recent IF: 9.466
Call Number UA @ admin @ c:irua:159413 Serial 5262
Permanent link to this record
 

 
Author Choudhary, K.; Bercx, M.; Jiang, J.; Pachter, R.; Lamoen, D.; Tavazza, F.
Title Accelerated Discovery of Efficient Solar Cell Materials Using Quantum and Machine-Learning Methods Type A1 Journal article
Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 31 Issue 15 Pages 5900-5908
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Solar energy plays an important role in solving serious environmental

problems and meeting the high energy demand. However, the lack of suitable

materials hinders further progress of this technology. Here, we present the largest

inorganic solar cell material search till date using density functional theory (DFT) and

machine-learning approaches. We calculated the spectroscopic limited maximum

efficiency (SLME) using the Tran−Blaha-modified Becke−Johnson potential for 5097

nonmetallic materials and identified 1997 candidates with an SLME higher than 10%,

including 934 candidates with a suitable convex-hull stability and an effective carrier

mass. Screening for two-dimensional-layered cases, we found 58 potential materials

and performed G0W0 calculations on a subset to estimate the prediction uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine-learning model to prescreen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar

cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.

ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/, and https://github.com/usnistgov/jarvis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480826900060 Publication Date 2019-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access
Notes ; ; Approved (up) Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:161814 Serial 5291
Permanent link to this record
 

 
Author Ramachandran, R.K.; Filez, M.; Solano, E.; Poelman, H.; Minjauw, M.M.; Van Daele, M.; Feng, J.-Y.; La Porta, A.; Altantzis, T.; Fonda, E.; Coati, A.; Garreau, Y.; Bals, S.; Marin, G.B.; Detavernier, C.; Dendooven, J.
Title Chemical and Structural Configuration of Pt Doped Metal Oxide Thin Films Prepared by Atomic Layer Deposition Type A1 Journal article
Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 31 Issue 31 Pages 9673-9683
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Pt doped semiconducting metal oxides and Pt metal clusters embedded in an oxide matrix are of interest for applications such as catalysis and gas sensing, energy storage and memory devices. Accurate tuning of the dopant level is crucial for adjusting the properties of these materials. Here, a novel atomic layer deposition (ALD) based method for doping Pt into In2O3 in specific, and metals in metal oxides in general, is demonstrated. This approach combines alternating exposures of Pt and In2O3 ALD processes in a single ‘supercycle’, followed by supercycle repetition leading to multilayered nanocomposites. The atomic level control of ALD and its conformal nature make the method suitable for accurate dopant control even on high surface area supports. Oxidation state, local structural environment and crystalline phase of the embedded Pt dopants were obtained by means of X-ray characterization methods and high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In addition, this approach allows characterization of the nucleation stages of metal ALD processes, by stacking those states multiple times in an oxide matrix. Regardless of experimental conditions, a few Pt ALD cycles leads to the formation of oxidized Pt species due to their highly dispersed nature, as proven by X-ray absorption spectroscopy (XAS). Grazing-incidence small-angle X-ray scattering (GISAXS) and highresolution scanning transmission electron microscopy, combined with energy dispersive X-ray spectroscopy (HR-STEM/EDXS) show that Pt is evenly distributed in the In2O3 metal oxide matrix without the formation of clusters. For a larger number of Pt ALD

cycles, typ. > 10, the oxidation state gradually evolves towards fully metallic, and metallic Pt clusters are obtained within the In2O3 metal oxide matrix. This work reveals how tuning of the ALD supercycle approach for Pt doping allows controlled engineering of the Pt compositional and structural configuration within a metal oxide matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000502418000010 Publication Date 2019-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access OpenAccess
Notes This research was supported by the Flemish Research Foundation (FWO-Vlaanderen), the Flemish Government (Long term structural funding – Methusalem funding and Medium scale research infrastructure funding-Hercules funding), the Special Research Fund BOF of Ghent University (GOA 01G01513) and the CALIPSO Trans National Access Program funded by the European Commission in supplying financing of travel costs. We are grateful to the SIXS and SAMBA-SOLEIL staff for smoothly running the beamline facilities. J.D. and R.K.R. are postdoctoral fellows of the FWO. Approved (up) Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:164056 Serial 5380
Permanent link to this record
 

 
Author Kirkwood, N.; De Backer, A.; Altantzis, T.; Winckelmans, N.; Longo, A.; Antolinez, F.V.; Rabouw, F.T.; De Trizio, L.; Geuchies, J.J.; Mulder, J.T.; Renaud, N.; Bals, S.; Manna, L.; Houtepen, A.J.
Title Locating and controlling the Zn content in In(Zn)P quantum dots Type A1 Journal article
Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 32 Issue 32 Pages 557-565
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs is debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In(Zn)P QDs is located at their surface as Zn-carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high resolution high-angle annular dark-field imaging scanning transmission electron microscopy (HAADF-STEM) with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn-acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn-carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In(Zn)P samples reported across the literature, and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn-carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000507721600056 Publication Date 2019-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 39 Open Access OpenAccess
Notes A.J.H. acknowledges support from the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand). This research is supported by the Dutch Technology Foundation TTW, which is part of The Netherlands Organization for Scientific Research (NWO), and which is partly funded by Ministry of Economic Affairs. SB acknowledges funding from the European Research Council (grant 815128 REALNANO). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project funding G.0381.16N and a postdoctoral grant to A.D.B. AJH, LM and JM acknowledge support from the H2020 Collaborative Project TEQ (Grant No. 766900).; sygma Approved (up) Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:165234 Serial 5438
Permanent link to this record
 

 
Author Minjauw, M.M.; Solano, E.; Sree, S.P.; Asapu, R.; Van Daele, M.; Ramachandran, R.K.; Heremans, G.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Detavernier, C.; Dendooven, J.
Title Plasma-enhanced atomic layer deposition of silver using Ag(fod)(PEt3) and NH3-plasma Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 17 Pages 7114-7121
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A plasma-enhanced atomic layer deposition (ALD) process using the Ag(fod)(PEt3) precursor [(triethylphosphine)(6,6,7,7,8,8,8-heptafluoro-2,2-dimethy1-3,5-octanedionate)silver(I)] in combination with NH3-plasma is reported. The steady growth rate of the reported process (0.24 +/- 0.03 nm/cycle) was found to be 6 times larger than that of the previously reported Ag ALD process based on the same precursor in combination with H-2-plasma (0.04 +/- 0.02 nm/cycle). The ALD characteristics of the H-2-plasma and NH3-plasma processes were verified. The deposited Ag films were polycrystalline face-centered cubic Ag for both processes. The film morphology was investigated by ex situ scanning electron microscopy and grazing-incidence small-angle X-ray scattering, and it was found that films grown with the NH3-plasma process exhibit a much higher particle areal density and smaller particle sizes on oxide substrates compared to those deposited using the H-2-plasma process. This control over morphology of the deposited Ag is important for applications in catalysis and plasmonics. While films grown with the H-2-plasma process had oxygen impurities (similar to 9 atom %) in the bulk, the main impurity for the NH3-plasma process was nitrogen (similar to 7 atom %). In situ Fourier transform infrared spectroscopy experiments suggest that these nitrogen impurities are derived from NH surface groups generated during the NH3-plasma, which interact with the precursor molecules during the precursor pulse. We propose that the reaction of these surface groups with the precursor leads to additional deposition of Ag atoms during the precursor pulse compared to the H-2-plasma process, which explains the enhanced growth rate of the NH3-plasma process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000410868600012 Publication Date 2017-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 9 Open Access
Notes ; M.M.M. and J.D. acknowledge the Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO Vlaanderen) for financial support through a personal research grant. We also acknowledge FWO Vlaanderen for providing project funding for this work. We are grateful to the ESRF staff for smoothly running the synchrotron and beamline facilities. We also thank Olivier Janssens for performing the SEM measurements and Stefaan Broekaert for mechanical assistance. J.A.M. acknowledges the Flemish Government for long-term structural funding (Methusalem). ; Approved (up) Most recent IF: 9.466
Call Number UA @ admin @ c:irua:146757 Serial 5983
Permanent link to this record
 

 
Author Salzmann, B.B.V.; Vliem, J.F.; Maaskant, D.N.; Post, L.C.; Li, C.; Bals, S.; Vanmaekelbergh, D.
Title From CdSe nanoplatelets to quantum rings by thermochemical edge reconfiguration Type A1 Journal article
Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
Volume 33 Issue 17 Pages 6853-6859
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The variation in the shape of colloidal semiconductor nanocrystals (NCs) remains intriguing. This interest goes beyond crystallography as the shape of the NC determines its energy levels and optoelectronic properties. While thermodynamic arguments point to a few or just a single shape(s), terminated by the most stable crystal facets, a remarkable variation in NC shape has been reported for many different compounds. For instance, for the well-studied case of CdSe, close-to-spherical quantum dots, rods, two-dimensional nanoplatelets, and quantum rings have been reported. Here, we report how two-dimensional CdSe nanoplatelets reshape into quantum rings. We monitor the reshaping in real time by combining atomically resolved structural characterization with optical absorption and photoluminescence spectroscopy. We observe that CdSe units leave the vertical sides of the edges and recrystallize on the top and bottom edges of the nanoplatelets, resulting in a thickening of the rims. The formation of a central hole, rendering the shape into a ring, only occurs at a more elevated temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000696553600024 Publication Date 2021-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 7 Open Access OpenAccess
Notes Hans Meeldijk is kindly acknowledged for helping with electron microscopy at Utrecht University. B.B.V.S. and D.V. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant no. 715.016.002. D.V. acknowledges financial support from the European ERC Council, ERC Advanced grant 692691 “First Step”. D.V. and L.C.P. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant nr. 718.015.002. S.B acknowledges financial support from the European ERC Council, ERC Consolidator grant 815128. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 731019 (EUSMI). Realnano; sygmaSB Approved (up) Most recent IF: 9.466
Call Number UA @ admin @ c:irua:181550 Serial 6839
Permanent link to this record
 

 
Author Feng, H.L.; Kang, C.-J.; Manuel, P.; Orlandi, F.; Su, Y.; Chen, J.; Tsujimoto, Y.; Hadermann, J.; Kotliar, G.; Yamaura, K.; McCabe, E.E.; Greenblatt, M.
Title Antiferromagnetic order breaks inversion symmetry in a metallic double perovskite, Pb₂NiOsO₆ Type A1 Journal article
Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
Volume 33 Issue 11 Pages 4188-4195
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A polycrystalline sample of Pb2NiOsO6 was synthesized under high-pressure (6 GPa) and high-temperature (1575 K) conditions. Pb2NiOsO6 crystallizes in a monoclinic double perovskite structure with a centrosymmetric space group P2(1)/n at room temperature. Pb2NiOsO6 is metallic down to 2 K and shows a single antiferromagnetic (AFM) transition at T-N = 58 K. Pb2NiOsO6 is a new example of a metallic and AFM oxide with three-dimensional connectivity. Neutron powder diffraction and first-principles calculation studies indicate that both Ni and Os moments are ordered below T-N and the AFM magnetic order breaks inversion symmetry. This loss of inversion symmetry driven by AFM order is unusual in metallic systems, and the 3d-Sd double-perovskite oxides represent a new class of noncentrosymmetric AFM metallic oxides.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000661521800032 Publication Date 2021-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 9.466
Call Number UA @ admin @ c:irua:179679 Serial 6854
Permanent link to this record
 

 
Author Li, W.; Tong, W.; Yadav, A.; Bladt, E.; Bals, S.; Funston, A.M.; Etheridge, J.
Title Shape control beyond the seeds in gold nanoparticles Type A1 Journal article
Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
Volume 33 Issue 23 Pages 9152-9164
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In typical seed-mediated syntheses of metal nanocrystals, the shape of the nanocrystal is determined largely by the seed nucleation environment and subsequent growth environment (where “environment” refers to the chemical environment, including the surfactant and additives). In this approach, crystallinity is typically determined by the seeds, and surfaces are controlled by the environment(s). However, surface energies, and crystallinity, are both influenced by the choice of environment(s). This limits the permutations of crystallinity and surface facets that can be mixed and matched to generate new nanocrystal morphologies. Here, we control post-seed growth to deliberately incorporate twin planes during the growth stage to deliver new final morphologies, including twinned cubes and bipyramids from single-crystal seeds. The nature and number of twin planes, together with surfactant control of facet growth, define the final nanoparticle morphology. Moreover, by breaking symmetry, the twin planes introduce new facet orientations. This additional mechanism opens new routes for the synthesis of different morphologies and facet orientations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000753956100012 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 3 Open Access Not_Open_Access
Notes This work was supported by the Australian Research Council (ARC) Grants DP160104679 and CE170100026 and used microscopes at the Monash Centre for Electron Microscopy funded by ARC Grants LE0454166, LE110100223, and LE140100104. W.L. thanks the support of the Australian Government Research Training Program (RTP) scholarship. W.T. thanks the Australian Department of Education and Monash University for the IPRS and APA scholarships. E.B. acknowledges financial support and a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). The authors thank Dr. Matthew Weyland and Dr. Tim Peterson for helpful discussions. A.Y. thanks the support from Post Graduation Publication Award (PPA) scholarship from Monash University. Approved (up) Most recent IF: 9.466
Call Number UA @ admin @ c:irua:187229 Serial 7065
Permanent link to this record
 

 
Author Barnabé, A.; Millange, F.; Maignan, A.; Hervieu, M.; Raveau, B.; Van Tendeloo, G.; Laffez, P.
Title Barium-based manganites Ln1-xBaxMnO3 with Ln = {Pr, La}: phase transitions and magnetoresistance properties Type A1 Journal article
Year 1998 Publication Chem. mater. Abbreviated Journal Chem Mater
Volume 10 Issue Pages 252-259
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000071624400037 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 48 Open Access
Notes Approved (up) Most recent IF: 9.466; 1998 IF: 3.359
Call Number UA @ lucian @ c:irua:25689 Serial 220
Permanent link to this record
 

 
Author Luhrs, C.C.; Molins, E.; Van Tendeloo, G.; Beltran-Porter, D.; Fuertes, A.
Title Crystal structure of Bi6Sr8-xCa3+xO22(-0.5\leq x\leq1.7): a mixed valence bismuth oxide related to perovskite Type A1 Journal article
Year 1998 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 10 Issue 7 Pages 1875-1881
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of BiSr8-xCa3+xO22 has been determined by single-crystal X-ray diffraction. This phase is the same as Bi9Sr11Ca5Oy that was previously studied by several authors as a secondary phase in the Bi-Sr-Ca-Cu-O system and coexists in thermodynamic equilibrium with the superconductors Bi2Sr2CuO6 and Bi2Sr2CaCu2O8 It crystallizes in the monoclinic space group P2(1)/c, with cell parameters a 11.037(3) Angstrom, b = 5.971(2) Angstrom, c = 19.703(7) Angstrom, beta = 101.46(3)degrees Z = 2. The structure was solved by direct methods and full-matrix least-squares refinement. It is built up by perovskite-related blocks of composition [Sr8-xBi2Ca3+xO16] that intergrow with double rows [Bi4O6] running along b. The perovskite blocks are formed by groups of five octahedra that are shifted from each other 3/2 root 2a(p) along [110](p) (a(p) being the parameter of the cubic perovskite subcell) in a zigzag configuration and are aligned with this direction parallel to the one forming an angle of 25" with the c axis. In turn, the perovskite blocks [Sr8-xBi2Ca3+xO16] are shifted from each other 1/2 of both a(p) and root 2a(p) along [100](p) and [110](p), respectively. In the double rows, two trivalent bismuth atoms are placed, forming dimeric anion complexes [Bi2O6].(6-).6- The oxygen atoms around bismuth in these dimers are placed in the vertexes of a distorted trigonal bipyramid, with one vacant position that would be occupied by the lone pairs characteristic for the electronic configuration of Bi(III). The B sites in the perovskite blocks are occupied by pentavalent bismuth atoms and calcium atoms; the remaining Sr and Ca ions occupy the A sites of the perovskite blocks with coordination numbers with oxygen ranging from 10 to 12. The mean valence for Bi is +3.67 [33.3% of Bi(V) and 66.7% of Bi(III)]. The oxygen vacancies are located in the boundaries between domains having the two possible configurations of the perovskite subcell as in the anionic superconductor Bi3BaO5.5. The oxidation of Bi6Sr8-xCa3+xO22 at 650 degrees C allows the complete filling of the oxygen vacancies to form the double perovskite (Sr2-xCax)Bi1.4Ca0.6O6 that shows 92.5% of bismuth in +5 oxidation state. The experimental high-resolution electon microscopy image and the electron diffraction pattern of powder samples along the [010]* zone axis are in good agreement with those calculated from the structural model obtained by single-crystal X-ray diffraction. The material is almost free of defects and the occurrence of planar defects is very exceptional.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000075019300023 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access
Notes Approved (up) Most recent IF: 9.466; 1998 IF: 3.359
Call Number UA @ lucian @ c:irua:104328 Serial 570
Permanent link to this record
 

 
Author Francesconi, M.G.; Kirbyshire, A.L.; Greaves, C.; Richard, O.; Van Tendeloo, G.
Title Synthesis and structure of Bi14O20(SO4), a new bismuth oxide sulfate Type A1 Journal article
Year 1998 Publication Chem. mater. Abbreviated Journal Chem Mater
Volume 10 Issue Pages 626-632
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000072146800027 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 30 Open Access
Notes Approved (up) Most recent IF: 9.466; 1998 IF: 3.359
Call Number UA @ lucian @ c:irua:25660 Serial 3442
Permanent link to this record
 

 
Author Fröba, M.; Köhn, R.; Bouffaud, G.; Richard, O.; Van Tendeloo, G.
Title _Fe2O3 nanoparticles with mesoporous MCM-48 silica: in situ formation and characterisation Type A1 Journal article
Year 1999 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 11 Issue Pages 2858-2865
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000083261100032 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 202 Open Access
Notes Approved (up) Most recent IF: 9.466; 1999 IF: 3.273
Call Number UA @ lucian @ c:irua:29721 Serial 3530
Permanent link to this record
 

 
Author Hervieu, M.; Martin, C.; Maignan, A.; Van Tendeloo, G.; Jirak, Z.; Hejtmanek, J.; Barnabe, A.; Thopart, D.; Raveau, B.
Title Structural and magnetotransport transitions in the electron-doped Pr1-xSrxMnO3(0.85\leq x\leq1) manganites Type A1 Journal article
Year 2000 Publication Chemistry and materials Abbreviated Journal Chem Mater
Volume 12 Issue 5 Pages 1456-1462
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The exploration of the Mn4+-rich side of the Pr1-xSrxMnO3 system has allowed the extension of the domain of the cubic perovskite, by using a two-step process, combining synthesis under Ar flow at high temperature and O-2 pressure annealing at lower temperature. We show that these Pr-doped cubic perovskites exhibit a coupled structural (cubic-tetragonal) and magnetic (para-antiferro) transition connected with a resistivity jump at the same temperature. The strong interplay between lattice, charges, and spins for these oxides results from the appearance at low temperature of the distorted C-type antiferromagnetic structure. The Pr1-xSrxMnO3 magnetic phase diagram shows, for 0.9 less than or equal to x less than or equal to 1 (i.e., on the Mn4+-rich side), the existence at low temperature of C- and G-type antiferromagnetism. The absence of ferromagnetic-antiferromagnetic competition explains that magnetoresistante properties are not observed in this system, in contrast to Mn4+-rich Ln(1-x)Ca(x)MnO(3) systems.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000087136800039 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 24 Open Access
Notes Approved (up) Most recent IF: 9.466; 2000 IF: 3.580
Call Number UA @ lucian @ c:irua:103454 Serial 3198
Permanent link to this record
 

 
Author Belik, A.; Izumi, F.; Ikeda, T.; Morozov, V.A.; Dilanian, R.; Torii, S.; Kopnin, E.; Lebedev, O.I.; Van Tendeloo, G.; Lazoryak, B.I.
Title Positional and orientational disorder in a solid solution of Sr9-xNi1.5-x(PO4)7 (x=0.3) Type A1 Journal article
Year 2002 Publication Chemistry and materials Abbreviated Journal Chem Mater
Volume 14 Issue Pages 4464-4472
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000178782900069 Publication Date 2002-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 28 Open Access
Notes Approved (up) Most recent IF: 9.466; 2002 IF: 3.967
Call Number UA @ lucian @ c:irua:54768 Serial 2676
Permanent link to this record
 

 
Author Corbel, G.; Attfield, J.P.; Hadermann, J.; Abakumov, A.M.; Alekseeva, A.M.; Rozova, M.G.; Antipov, E.V.
Title Anion rearrangements in fluorinated Nd2CuO3.5 Type A1 Journal article
Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 15 Issue Pages 189-195
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000180368000029 Publication Date 2003-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 9 Open Access
Notes Approved (up) Most recent IF: 9.466; 2003 IF: 4.374
Call Number UA @ lucian @ c:irua:40348 Serial 123
Permanent link to this record
 

 
Author Lazoryak, B.I.; Baryshnikova, O.V.; Stefanovich, S.Y.; Malakho, A.P.; Morozov, V.A.; Belik, A.A.; Leonidov, I.A.; Leonidova, O.N.; Van Tendeloo, G.
Title Ferroelectric and ionic-conductive properties of nonlinear-optical vanadate, Ca9Bi(VO4)7 Type A1 Journal article
Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 15 Issue 15 Pages 3003-3010
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Structural, chemical, and physical properties of whitlockite-type Ca9Bi(VO4)(7) were studied by X-ray powder diffraction (XRD), electron diffraction (ED), second-harmonic generation (SHG), thermogravimetry, differential scanning calorimetry, dielectric, and electrical-conductivity measurements. A new phase-transition of the ferroelectric type was found in Ca9Bi(VO4)(7) with a transition temperature, T-c of 1053 +/- 3 K. The polar phase, beta-Ca9Bi(VO4)(7), is stable below T-c down to at least 160 K. The centrosymmetric beta'-phase is stable above T-c up to 1273 +/- 5 K. Above 1273 K, it decomposes to give BiVO4 and whitlockite-type solid solutions of Ca9+1.5xBi1-x(VO4)(7). The beta<---->beta' phase transition is reversible and of second order. Electrical conductivity of beta'-Ca9Bi(VO4)(7) is rather high (sigma = 0.6 x 10(-3) S/cm at 1200 K) and obeys the Arrhenius law with an activation energy of 1.0 eV. Structure parameters of Ca9Bi(VO4)(7) are refined by the Rietveld method from XRD data measured at room temperature (space group R3c; Z = 6; a = 10.8992(1) Angstrom, c = 38.1192(4) Angstrom, and V = 3921.6(1) Angstrom(3); R-wp = 3.06% and R-p = 2.36%). Bi3+ ions together with Ca2+ ions are statistically distributed among the M1, M2, M3, and M5 sites. Ca9Bi(VO4)(7) has a SHG efficiency of about 140 times that of quartz. Through the powder SHG measurements, we estimated the nonlinear optical susceptibility, Digital, at about 6.1-7.2 pm/V. This value for Ca9Bi(VO4)(7) is comparable with that for known nonlinear optical materials such as LiNbO3 and LiTaO3.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000184379900024 Publication Date 2003-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 51 Open Access
Notes Iup V-1; Dwtc Approved (up) Most recent IF: 9.466; 2003 IF: 4.374
Call Number UA @ lucian @ c:irua:103284 Serial 1179
Permanent link to this record
 

 
Author Linssen, T.; Cassiers, K.; Cool, P.; Lebedev, O.; Whittaker, A.; Vansant, E.F.
Title Physicochemical and structural characterization of mesoporous aluminosilicates synthesized from leached saponite with additional aluminum incorporation Type A1 Journal article
Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 15 Issue 25 Pages 4863-4873
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract A thorough investigation was performed on the physical (mechanical, thermal, and hydrothermal stability) and chemical (ion exchange capacity and silanol number) characteristics of aluminosilicate FSMs, synthesized via a new successful short-time synthesis route using leached saponite and a low concentration of CTAB. Moreover, the influence of an additional Al incorporation, utilizing different aluminum sources, on the structure of the FSM derived from saponite is studied. A mesoporous aluminosilicate with a low Si/Al ratio of 12.8 is synthesized, and still has a very large surface area of 1130 m(2)/g and pore volume of 0.92 cm(3)/g. The aluminum-containing samples all have a high cation exchange capacity of around 1 mmol/9 while they still have a silanol number of about 0.9 OH/nm(2); both characteristics being interesting for high-yield postsynthesis modification reactions. Finally, a study is performed on the transformation of the aluminosilicates into their Bronsted acid form via the exchange with ammonium ions and a consecutive heat treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000187250800026 Publication Date 2003-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access
Notes Approved (up) Most recent IF: 9.466; 2003 IF: 4.374
Call Number UA @ lucian @ c:irua:103265 Serial 2618
Permanent link to this record
 

 
Author Panin, R.V.; Shpanchenko, R.V.; Mironov, A.V.; Velikodny, Y.A.; Antipov, E.V.; Hadermann, J.; Tarnopolsky, V.A.; Yaroslavtsev, A.B.; Kaul, E.E.; Geibel, C.
Title Crystal structure, polymorphism, and properties of the new vanadyl phosphate Na4VO(PO4)2 Type A1 Journal article
Year 2004 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 16 Issue Pages 1048-1055
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000220304100014 Publication Date 2004-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access
Notes Approved (up) Most recent IF: 9.466; 2004 IF: 4.103
Call Number UA @ lucian @ c:irua:43873 Serial 577
Permanent link to this record
 

 
Author Pelloquin, D.; Hadermann, J.; Giot, M.; Caignaert, V.; Michel, C.; Hervieu, M.; Raveau, B.
Title Novel, oxygen-deficient n=3 RP-member Sr3NdFe3O9-\delta and its topotactic derivatives Type A1 Journal article
Year 2004 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 16 Issue Pages 1715-1724
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000221345000019 Publication Date 2004-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 24 Open Access
Notes Approved (up) Most recent IF: 9.466; 2004 IF: 4.103
Call Number UA @ lucian @ c:irua:47318 Serial 2381
Permanent link to this record
 

 
Author Rossell, M.D.; Abakumov, A.M.; Van Tendeloo, G.; Pardo, J.A.; Santiso, J.
Title Structure and microstructure of epitaxial Sr4Fe6O13-\delta films on SrTiO3 Type A1 Journal article
Year 2004 Publication Chemistry and materials Abbreviated Journal Chem Mater
Volume 16 Issue Pages 2578-2584
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure and the microstructure of epitaxial Sr4Fe6O13+/-delta thin films grown on a single-crystal SrTiO3 substrate by PLD have been investigated. A combination of electron diffraction and high-resolution microscopy allows us to refine the structure and to identify an incommensurate modulation in the Sr4Fe6O13+/-delta films. The incommensurate structure (q = alphaa(m)* approximate to 0.39alpha(m)*, superspace group Xmmm(alpha00)0s0) can be interpreted as an oxygen-deficient modification in the Fe2O2.5 double layers. Moreover, it is shown that the experimentally determined a component of the modulation can be used consistently to estimate the local oxygen content in the Sr4Fe6O13+/-delta films. The compound composition can therefore be described as Sr4Fe6O12+2alpha and the value alpha = 0.39 corresponds to a Sr4Fe6O12.78 composition. The misfit stress along the Sr4Fe6O13+/-delta/SrTiO3 interface is accommodated via both elastic deformation and inelastic mechanisms (misfit dislocations and 90degrees rotation twins). The present results also suggest the existence of SrFeO3 perovskite in the Sr4Fe6O13+/-delta films.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000222252300011 Publication Date 2004-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 26 Open Access
Notes Approved (up) Most recent IF: 9.466; 2004 IF: 4.103
Call Number UA @ lucian @ c:irua:54770 Serial 3286
Permanent link to this record
 

 
Author Lebedev, O.I.; Millange, F.; Serre, C.; Van Tendeloo, G.; Férey, G.
Title First direct imaging of giant pores of the metal-organic framework MIL-101 Type A1 Journal article
Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 17 Issue 26 Pages 6525-6527
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000234187300007 Publication Date 2005-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 191 Open Access
Notes Approved (up) Most recent IF: 9.466; 2005 IF: 4.818
Call Number UA @ lucian @ c:irua:56404 Serial 1197
Permanent link to this record
 

 
Author Abakumov, A.M.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.; Lobanov, M.V.; Greenblatt, M.; Croft, M.; Tsiper, E.V.; Llobet, A.; Lokshin, K.A.; Zhao, Y.
Title Synthesis, cation ordering, and magnetic properties of the (Sb1-xPbx)2(Mn1-ySby)O4 solid solutions with the Sb2MnO4-type structure Type A1 Journal article
Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 17 Issue Pages 1123-1134
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000227421300029 Publication Date 2005-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 16 Open Access
Notes Iap V-1 Approved (up) Most recent IF: 9.466; 2005 IF: 4.818
Call Number UA @ lucian @ c:irua:51440 Serial 3446
Permanent link to this record
 

 
Author Govorov, V.A.; Abakumov, A.M.; Rozova, M.G.; Borzenko, A.G.; Vassiliev, S.Y.; Mazin, V.M.; Afanasov, M.I.; Fabritchnyi, P.B.; Tsirlina, G.A.; Antipov, E.V.; Morozova, E.N.; Gippius, A.A.; Ivanov, V.V.; Van Tendeloo, G.
Title Sn2-2xSbxFexO4 solid solutions as possible inert anode materials in aluminum electrolysis Type A1 Journal article
Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 17 Issue 11 Pages 3004-3011
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000229656000030 Publication Date 2005-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access
Notes Approved (up) Most recent IF: 9.466; 2005 IF: 4.818
Call Number UA @ lucian @ c:irua:59053 Serial 3554
Permanent link to this record
 

 
Author Rossell, M.D.; Abakumov, A.M.; Van Tendeloo, G.; Lomakov, M.V.; Istomin, S.Y.; Antipov, E.V.
Title Transmission electron microscopic study of the defect structure in Sr4Fe6O12+\delta compounds with variable oxygen content Type A1 Journal article
Year 2005 Publication Chemistry and materials Abbreviated Journal Chem Mater
Volume 17 Issue Pages 4717-4726
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000231742600024 Publication Date 2005-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 17 Open Access
Notes Approved (up) Most recent IF: 9.466; 2005 IF: 4.818
Call Number UA @ lucian @ c:irua:54772 Serial 3703
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Gillie, L.J.; Martin, C.; Hervieu, M.
Title Coupled cation and charge ordering in the CaMn306 tunnel structure Type A1 Journal article
Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 18 Issue 23 Pages 5530-5536
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000241808600021 Publication Date 2006-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 33 Open Access
Notes Iap V-1 Approved (up) Most recent IF: 9.466; 2006 IF: 5.104
Call Number UA @ lucian @ c:irua:61374 Serial 534
Permanent link to this record
 

 
Author Bune, R.O.; Lobanov, M.V.; Popov, G.; Greenblatt, M.; Botez, C.E.; Stephens, P.W.; Croft, M.; Hadermann, J.; Van Tendeloo, G.
Title Crystal structure and properties of Ru-stoichiometric LaSrMnRuO6 Type A1 Journal article
Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 18 Issue 10 Pages 2611-2617
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000237593400022 Publication Date 2006-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 17 Open Access
Notes Approved (up) Most recent IF: 9.466; 2006 IF: 5.104
Call Number UA @ lucian @ c:irua:59441 Serial 563
Permanent link to this record
 

 
Author Créon, N.; Pérez, O.; Hadermann, J.; Klein, Y.; Hébert, S.; Hervieu, M.; Raveau, B.
Title Double modulation and microstructure of the thermoelectric misfit compound \left[Ca2-yLnyCu0.7+yCo1.3-yO4\right]\left[CoO2\right]b_{1/b2} (Ln = Pr, Y and 0\leq y\leq1/3) Type A1 Journal article
Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 18 Issue 22 Pages 5355-5362
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000241492900033 Publication Date 2006-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access
Notes Approved (up) Most recent IF: 9.466; 2006 IF: 5.104
Call Number UA @ lucian @ c:irua:61846 Serial 755
Permanent link to this record
 

 
Author Morozov, V.A.; Arakcheeva, A.V.; Chapuis, G.; Guiblin, N.; Rossell, M.D.; Van Tendeloo, G.
Title KNd(MoO4)2: a new incommensurate modulated structure in the scheelite family Type A1 Journal article
Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 18 Issue 17 Pages 4075-4082
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000239758300022 Publication Date 2006-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 46 Open Access
Notes Iap V-1 Approved (up) Most recent IF: 9.466; 2006 IF: 5.104
Call Number UA @ lucian @ c:irua:60688 Serial 3538
Permanent link to this record
 

 
Author Whaley, L.W.; Lobanov, M.V.; Sheptyakov, D.; Croft, M.; Ramanujachary, K.V.; Lofland, S.; Stephens, P.W.; Her, J.H.; Van Tendeloo, G.; Rossell, M.; Greenblatt, M.;
Title Sr3Fe5/4Mo3/4O6.9, an n = 2 Ruddlesden-Popper phase: synthesis and properties Type A1 Journal article
Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 18 Issue 15 Pages 3448-3457
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000239085900010 Publication Date 2006-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 15 Open Access
Notes Approved (up) Most recent IF: 9.466; 2006 IF: 5.104
Call Number UA @ lucian @ c:irua:60579 Serial 3560
Permanent link to this record