|   | 
Details
   web
Records
Author de Sousa, A.A.; Chaves, A.; Pereira, T.A.S.; Farias, G.A.; Peeters, F.M.
Title Quantum tunneling between bent semiconductor nanowires Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 174301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the electronic transport properties of two closely spaced L-shaped semiconductor quantum wires, for different configurations of the output channel widths as well as the distance between the wires. Within the effective-mass approximation, we solve the time-dependent Schrodinger equation using the split-operator technique that allows us to calculate the transmission probability, the total probability current, the conductance, and the wave function scattering between the energy subbands. We determine the maximum distance between the quantum wires below which a relevant non-zero transmission is still found. The transmission probability and the conductance show a strong dependence on the width of the output channel for small distances between the wires. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000364584200020 Publication Date 2015-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 7 Open Access
Notes ; A. A. Sousa was financially supported by CAPES, under the PDSE Contract No. BEX 7177/13-5. T. A. S. Pereira was financially supported by PRONEX/CNPq/FAPEMAT 850109/2009 and by CAPES under process BEX 3299/13-9. This work was financially supported by PRONEX/CNPq/FUNCAP, the Science Without Borders program and the bilateral project CNPq-FWO. ; Approved (up) Most recent IF: 2.068; 2015 IF: 2.183
Call Number UA @ lucian @ c:irua:129544 Serial 4234
Permanent link to this record
 

 
Author Khanam, A.; Vohra, A.; Slotte, J.; Makkonen, I.; Loo, R.; Pourtois, G.; Vandervorst, W.
Title A demonstration of donor passivation through direct formation of V-As-i complexes in As-doped Ge1-XSnx Type A1 Journal article
Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 127 Issue 19 Pages 195703
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Positron annihilation spectroscopy in the Doppler and coincidence Doppler mode was applied on Ge1 xSnx epitaxial layers, grown by chemical vapor deposition with different total As concentrations (1019-1021 cm3), high active As concentrations (1019 cm3), and similar Sn concentrations (5.9%-6.4%). Positron traps are identified as mono-vacancy complexes. Vacancy-As complexes, V-Asi, formed during the growth were studied to deepen the understanding of the electrical passivation of the Ge1 xSnx:As epilayers. Larger monovacancy complexes, V-Asi (i 2), are formed as the As doping increases. The total As concentration shows a significant impact on the saturation of the number of As atoms (i 1/4 4) around the vacancies in the sample epilayers. The presence of V-Asi complexes decreases the dopant activation in the Ge1 xSnx:As epilayers. Furthermore, the presence of Sn failed to hinder the formation of larger V-Asi complexes and thus failed to reduce the donor-deactivation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000536196000003 Publication Date 2020-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited Open Access
Notes ; ; Approved (up) Most recent IF: 3.2; 2020 IF: 2.068
Call Number UA @ admin @ c:irua:170252 Serial 6447
Permanent link to this record
 

 
Author Topalovic, D.B.; Arsoski, V.V.; Tadic, M.Z.; Peeters, F.M.
Title Asymmetric versus symmetric HgTe/CdxHg1-x Te double quantum wells: Bandgap tuning without electric field Type A1 Journal article
Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 128 Issue 6 Pages 064301-64308
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the electron states in double asymmetric HgTe / Cd x Hg 1 – x Te quantum wells grown along the [ 001 ] direction. The subbands are computed by means of the envelope function approximation applied to the eight-band Kane k . mml:mspace width=“.1em”mml:mspace p model. The asymmetry of the confining potential of the double quantum wells results in a gap opening, which is absent in the symmetric system where it can only be induced by an applied electric field. The bandgap and the subbands are affected by spin-orbit coupling, which is a consequence of the asymmetry of the confining potential. The electron-like and hole-like states are mainly confined in different quantum wells, and the enhanced hybridization between them opens a spin-dependent hybridization gap at a finite in-plane wavevector. We show that both the ratio of the widths of the two quantum wells and the mole fraction of the C d x H g 1 – x Te barrier control both the energy gap between the hole-like states and the hybridization gap. The energy subbands are shown to exhibit inverted ordering, and therefore, a nontrivial topological phase could emerge in the system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000561339300001 Publication Date 2020-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited 4 Open Access
Notes ; This research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia and the Flemish Science Foundation (FWO-Vl). ; Approved (up) Most recent IF: 3.2; 2020 IF: 2.068
Call Number UA @ admin @ c:irua:171146 Serial 6453
Permanent link to this record
 

 
Author Liang, Y.-S.; Liu, Y.-X.; Zhang, Y.-R.; Wang, Y.-N.
Title Investigation of voltage effect on reaction mechanisms in capacitively coupled N-2 discharges Type A1 Journal article
Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 127 Issue 13 Pages 133301
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A systematic investigation of voltage effect on the plasma parameters, especially the species densities and chemical reaction mechanisms, in the capacitive N-2 discharges is performed by employing a two-dimensional self-consistent fluid model. The validity of the numerical model is first demonstrated by the qualitative agreement of the calculated and experimental results. Then, the densities, production mechanisms, and loss mechanisms of species from simulation are examined at various voltages. It is found that all the species densities increase monotonically with the voltage, whereas their spatial profiles at lower voltages are quite different from those at higher voltages. The electrons and Nthorn 2 ions are mainly generated by the electron impact ionization of N-2 gas, while the Nthorn ions, whose density is one or two orders of magnitude lower, are mostly formed by the ionization of N atoms. The electron impact dissociation of N-2 gas dominates the generation of N atoms, which are mostly destroyed for the Nthorn ion production. As for the excited N-2 levels, the level conversion processes play a very important role in their production and depletion mechanisms, except for the electron impact excitation of the ground state N-2 molecules. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000524256700001 Publication Date 2020-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited Open Access
Notes ; This work was financially supported by the National Natural Science Foundation of China (NNSFC) (Grant Nos. 11805089 and 11875101), the Natural Science Foundation of Liaoning Province, China (Grant No. 2019-BS-127), the Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, China (Grant No. KF1804), and the China Scholarship Council. ; Approved (up) Most recent IF: 3.2; 2020 IF: 2.068
Call Number UA @ admin @ c:irua:168558 Serial 6555
Permanent link to this record
 

 
Author Li, Q.N.; Xu, W.; Xiao, Y.M.; Ding, L.; Van Duppen, B.; Peeters, F.M.
Title Optical absorption window in Na₃Bi based three-dimensional Dirac electronic system Type A1 Journal article
Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 128 Issue 15 Pages 155707
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a detailed theoretical study of the optoelectronic properties of a Na3Bi based three-dimensional Dirac electronic system (3DDES). The optical conductivity is evaluated using the energy-balance equation derived from a Boltzmann equation, where the electron Hamiltonian is taken from a simplified k . p approach. We find that for short-wavelength irradiation, the optical absorption in Na3Bi is mainly due to inter-band electronic transitions. In contrast to the universal optical conductance observed for graphene, the optical conductivity for Na3Bi based 3DDES depends on the radiation frequency but not on temperature, carrier density, and electronic relaxation time. In the radiation wavelength regime of about 5 mu m, < lambda < 200 mu m, an optical absorption window is found. This is similar to what is observed in graphene. The position and width of the absorption window depend on the direction of the light polarization and sensitively on temperature, carrier density, and electronic relaxation time. Particularly, we demonstrate that the inter-band optical absorption channel can be switched on and off by applying the gate voltage. This implies that similar to graphene, Na3Bi based 3DDES can also be applied in infrared electro-optical modulators. Our theoretical findings are helpful in gaining an in-depth understanding of the basic optoelectronic properties of recently discovered 3DDESs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000585807400004 Publication Date 2020-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.2 Times cited 1 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (NNSFC Nos. U1930116, U1832153, 11764045, 11574319, and 11847054) and the Center of Science and Technology of Hefei Academy of Science (No. 2016FXZY002). Applied Basic Research Foundation of Department of Science and Technology of Yunnan Province (No. 2019FD134), the Department of Education of Yunnan Province (No. 2018JS010), the Young Backbone Teachers Training Program of Yunnan University, and the Department of Science and Technology of Yunnan Province are acknowledged. ; Approved (up) Most recent IF: 3.2; 2020 IF: 2.068
Call Number UA @ admin @ c:irua:173591 Serial 6571
Permanent link to this record
 

 
Author Chaves, A.; Moura, V.N.; Linard, F.J.A.; Covaci, L.; Milošević, M.V.
Title Tunable magnetic focusing using Andreev scattering in superconductor-graphene hybrid devices Type A1 Journal article
Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 128 Issue 12 Pages 124303
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We perform the wavepacket dynamics simulation of a graphene-based device where propagating electron trajectories are tamed by an applied magnetic field toward a normal/superconductor interface. The magnetic field controls the incidence angle of the incoming electronic wavepacket at the interface, which results in the tunable electron-hole ratio in the reflected wave function due to the angular dependence of the Andreev reflection. Here, mapped control of the quasiparticle trajectories by the external magnetic field not only defines an experimental probe for fundamental studies of the Andreev reflection in graphene but also lays the foundation for further development of magnetic focusing devices based on nanoengineered superconducting two-dimensional materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000576393200002 Publication Date 2020-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited 1 Open Access Not_Open_Access
Notes ; This work was supported by the Brazilian Council for Research (CNPq) through the PRONEX/FUNCAP and PQ programs and by the Research Foundation-Flanders (FWO). ; Approved (up) Most recent IF: 3.2; 2020 IF: 2.068
Call Number UA @ admin @ c:irua:172730 Serial 6639
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M.
Title Machine learning approach to constructing tight binding models for solids with application to BiTeCl Type A1 Journal article
Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 128 Issue 21 Pages 215107
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Finding a tight-binding (TB) model for a desired solid is always a challenge that is of great interest when, e.g., studying transport properties. A method is proposed to construct TB models for solids using machine learning (ML) techniques. The approach is based on the LCAO method in combination with Slater-Koster (SK) integrals, which are used to obtain optimal SK parameters. The lattice constant is used to generate training examples to construct a linear ML model. We successfully used this method to find a TB model for BiTeCl, where spin-orbit coupling plays an essential role in its topological behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000597311900001 Publication Date 2020-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited 10 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government and was partially supported by BOF (UAntwerpen Grant Reference No. ADPERS/BAP/RS/ 2019). We would like to thank one of the anonymous referees for assisting us in making the paper more accessible to the reader. ; Approved (up) Most recent IF: 3.2; 2020 IF: 2.068
Call Number UA @ admin @ c:irua:174380 Serial 6691
Permanent link to this record
 

 
Author Bogaerts, A.; van Straaten, M.; Gijbels, R.
Title Description of the thermalization process of the sputtered atoms in a glow discharge using a 3-dimensional Monte Carlo method Type A1 Journal article
Year 1995 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 77 Issue Pages 1868-1874
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1995RC30300006 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.183 Times cited 87 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:12270 Serial 655
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Goedheer, W.
Title Hybrid Monte Carlo-fluid model of a direct current glow discharge Type A1 Journal article
Year 1995 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 78 Issue Pages 2233-2241
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1995RP71800009 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.183 Times cited 117 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:12262 Serial 1526
Permanent link to this record
 

 
Author Hai, G.-Q.; Studart, N.; Peeters, F.M.; Koenraad, P.M.; Wolter, J.H.
Title Intersubband-coupling and screening effects on the electron transport in a quasi-two-dimensional δ-doped semiconductor system Type A1 Journal article
Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 80 Issue Pages 5809-5814
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effects due to intersubband coupling and screening on the ionized impurity scattering are studied for a quasi-two-dimensional electron system in delta-doped semiconductors. We found that intersubband coupling plays an essential role in describing the screening properties and the effect of ionized impurity scattering on the mobility in a multisubband system. At the onset of the occupation of a higher subband, the screening due to the intersubband coupling leads to a reduction of the small angle scattering rate in the lower subband. We showed that such an effect is significant in a delta-doped quantum well and results in a pronounced increase of the quantum mobility at the onset of the occupation of a higher subband. (C) 1996 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1996VU98700039 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.183 Times cited 40 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:15789 Serial 1712
Permanent link to this record
 

 
Author Laffez, P.; Van Tendeloo, G.; Seshadri, R.; Hervieu, M.; Martin, C.; Maignan, A.; Raveau, B.
Title Microstructural and physical properties of layered manganite oxides related to the magnetoresistive perovskites Type A1 Journal article
Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 80 Issue Pages 5850-5856
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1996VU98700045 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.183 Times cited 36 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:17848 Serial 2039
Permanent link to this record
 

 
Author Chu, D.P.; Peeters, F.M.; Kolodinski, S.; Roca, E.
Title Theoretical investigation of CoSi2/Si1-xGex detectors: influence of a Si tunneling barrier on the electro-optical characteristics Type A1 Journal article
Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 79 Issue Pages 1151-1156
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1996TQ77500084 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.183 Times cited 3 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:15801 Serial 3606
Permanent link to this record