|   | 
Details
   web
Records
Author Shaw, P.
Title Dual action of reactive species as signal and stress agents in plasma medicine : combined computational and experimental research Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 191 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Reactive oxygen and nitrogen species (RONS) generated by cold atmospheric plasma (CAP) can activate discrete signaling transduction pathways or disrupt redox cellular homeostasis, depending on their concentration. This makes that CAP possesses therapeutic potential towards wound healing, cancer, and other diseases. In order to effectively use CAP in the clinic, a clear understanding of the interaction of RONS with biomolecules (lipids, proteins and nucleic acids) from the atomic to the macro scale, and their biological significance, is needed. In this work, I have therefore studied the dual role of CAP-derived RONS, i.e., (i) in the signaling pathways involved in wound healing, and (ii) in their reaction with biomolecules to cause oxidation-mediated damage. I performed computer simulations to provide fundamental insight about the occurring processes that are difficult or even impossible to obtain experimentally. Furthermore, next to computational studies, I used both 2D and 3D tissue cultures. 3D model allows proliferation in a more physiologically relevant geometry that stimulates the production of extracellular matrix proteins. I investigated the treatment of human gingival fibroblasts with low doses of CAP-generated RONS. This treatment demonstrated that it can inhibit colony formation but does not induce cell death, induce the expression of metalloprotease proteins, induce extracellular matrix degradation, and promote cell migration, which could result in enhanced wound healing. In contrast, at high concentrations, RONS can disrupt the cell membrane integrity and induce cancer cell death through oxidative stress-mediated pathways. I discovered how oxidation of the cell membrane (lipid-peroxidation) can facilitate the access of a drug (Melittin) into cancer cells, and in this way, reduce the required therapeutic dose of Melittin in melanoma and breast cancer cells (demonstrated using in vitro, in ovo and in silico approaches). Furthermore, I studied how excessive lipid-oxidation in chemoresistant pancreatic cancer cells promotes ferroptotic cell death. This was due to the stimulation of the iron-dependent Fenton reaction by targeting a redox specific signaling network. However, upon oxidative stress, cells protect themselves via a sophisticated intracellular antioxidant system that involves the regulation of glutathione/glutathione peroxidase 4 (lipid repair enzyme). Cancer cells exhibited increased levels of intracellular RONS due to their hyper metabolism, leading to high expression of anti-oxidant systems. I therefore focus on the effect of reactive species on the intracellular anti-oxidant system and corresponding DNA damages in both temozolomide-sensitive as well as temozolomide-resistant glioblastoma spheroids, in a 3-dimensional tumor model with a more complex tumor microenvironment than cell monolayers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:183751 Serial 7828
Permanent link to this record
 

 
Author Cui, Z.
Title Experimental and theoretical study on SF6 degradation by packed-bed DBD plasma Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Sulfur hexafluoride (SF6), as a man-made gas, is widely used in power industry, semiconductor industry and metal-processing industry. However, SF6 is a greenhouse gas and its global warming potential is 23500 times that of CO2. Besides, SF6 is very stable, with a lifetime in the atmosphere for more than one thousand years. Under natural conditions, only the ultraviolet light can make it slowly decomposed. Thus, the emission of SF6 has a great threat to the environment. In recent years, with the development of our national economy, the use of SF6 increased dramatically. And 90% of the SF6 emissions come from the power industry. In the meantime, the emission of SF6 exists a ‘hysteresis effect’, as many of the SF6-gas insulation equipment will retire in next decades, the emission of SF6 may increase sharply, and this may put great pressure on the environment. Therefore, it’s necessary to make efforts in controlling and treating the SF6 emission. Among the SF6 abatement technologies, the non-thermal plasma(NTP) represented by the dielectric barrier discharge(DBD) can effectively degrade SF6 and is suitable for large-scale industry applications. However, its energy efficiency still gets room for improvement and this kind of method has a defect that it’s hard to regulate the degradation by-products. Therefore, this paper proposed the combination of the packed bed reactor and the DBD technology to form a packed DBD discharge system for SF6 degradation, so that to further improve the energy efficiency and regulate the selectivity of by-products. By experiment and simulation research, the following innovations have been achieved: (1) Based on the packed bed DBD platform, the power parameter and gas-phase parameters of SF6 degradation were studied. It was found that the discharge process was significantly enhanced with the addition of packing particles, and the discharge energy efficiency was improved. The increase of input voltage can obviously increase the degradation rate, but reduces the energy efficiency. The increase of SF6 initial concentration and gas flow rate can improve the energy efficiency, but reduce the degradation rate. Therefore, both degradation rate and energy efficiency should be considered in deciding basic experimental conditions. (2) Active gases, such as O2, H2O and NH3, could effectively promote the degradation rate of SF6, and changed the product selectivity. In our packed bed DBD system, O2 and H2O have the optimal concentration conditions, which are 2% and 1%, respectively. The addition of O2 can promote the generation of S-O-F products, and inhibit the selectivity of SO2, while the addition of H2O had the opposite effects. In addition, the synergistic degradation of NH3 and SF6 will produce solid products, such as NH3HF, NH4HF2 and elemental S. For gaseous products, the increase of NH3 will lead to the generation of SO2 in the final degradation products and inhibit the generation of S-O-F products. (3) Different kinds of packing materials have great impacts on the degradation system in the discharge parameters, degradation rate and energy efficiency, as well as the products distribution. In the experiment, we compared the degradation results in three systems: glass beads packing, γ-Al2O3 packing and no-packing system. The packing of glass beads effectively improved the discharge voltage amplitude and discharge power, while had a limited effect on the equivalent capacitance of the dielectric. Besides, γ-Al2O3 packing had little effect on voltage amplitude, but obviously increased the equivalent capacitance of the dielectric. Furthermore, the degradation rate and energy efficiency in γ-Al2O3 system was higher than that of glass bead system. For products selectivity, γ-Al2O3 system was more desirable, where S-O-F type of product selectivity was suppressed and the SO2 selectivity increased significantly. By contrast, the glass beads system hardly affected the product selectivity. This results are presumably due to the relatively high dielectric constant of γ-Al2O3 particles and γ-Al2O3 itself may act as a reactant or a catalyst participating in the degradation reactions. (4) The size and status of the packing particles also have significant effects on the degradation process. The systems packed with 1, 2 and 4mm γ-Al2O3 particles for SF6 degradation were compared, and the 2mm system had the best performance, which may because the 2mm system had a good balance between the active contact area and the gas residence time. In addition, the packing pellets suffered from a hydration process slightly reduced the discharge parameters in the γ-Al2O3 packing system and significantly reduced the degradation rate was, which may because the H2O molecules pre-occupied the active sites on the γ-Al2O3 surface and reduced the discharge process. (5) Based on density functional theory (DFT), the degradation process of SF6 in the packed bed DBD system was studied at atomic scale. It was found that the SF6 can occur a physical adsorption at AlⅢ active sites on γ-Al2O3 surface. The activation barrier for the first degradation step of SF6 on γ-Al2O3 surface is much lower than in gas phase, which proved that the SF6 molecule is activated on the γ-Al2O3 surface. In addition, the plasma may affect the γ-Al2O3 surface to generate excess electrons or external electric fields. This two effects can change the adsorbed SF6 molecules from physical adsorption to chemisorption, together with an obvious stretching of S-F bonds, indicating that the plasma surface effects prmote the activation and decomposition of SF6 molecules. Furthermore, the stepwise degradation process of SF6 on γ-Al2O3 surface were investigated. The influence of radicals produced by plasma on the degradation process was analyzed. It was found that via Eley–Rideal (ER) reactions, high-energy radicals could effectively reduce the activation barriers and promote the surface reactions. Finally, the degradation mechanism of SF6 molecules in the packed bed plasma system was summarized, which may provide a theoretical basis for the study of harmless degradation of SF6. Keywords: SF6; Packed Bed DBD; Discharge Parameters; Products Analysis; Degradation Mechanism
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:180819 Serial 7946
Permanent link to this record
 

 
Author Clima, S.; O'Sullivan, B.J.; Ronchi, N.; Bardon, M.G.; Banerjee, K.; Van den Bosch, G.; Pourtois, G.; van Houdt, J.
Title Ferroelectric switching in FEFET : physics of the atomic mechanism and switching dynamics in HfZrOx, HfO2 with oxygen vacancies and Si dopants Type P1 Proceeding
Year 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The fine balance between dipole-field energy and anion drift force defines the switching mechanism during polarization reversal: for the first time we show that only Pbcm mechanism obeys the ferroelectric switching physics, whereas P4(2)/nmc (or any other) mechanism does not. However, with lower energy barrier, it represents an important antiferroelectric mechanism. Constraints relaxation can lead to 90 degrees polarization rotation (domain deactivation). Intrinsically, the Si/VO-doping can switch faster than undoped HfO2 or HfZrOx. Theoretical Arrhenius model / intrinsic material switching (DFT) overestimates the switching speed extracted from experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000717011600218 Publication Date 2021-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-7281-8888-1 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:184730 Serial 7963
Permanent link to this record
 

 
Author Cong, S.
Title Numerical study on low-pressure hollow cathode argon arc plasma Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages XIX, 126 p.
Keywords Doctoral thesis; Philosophy; Educational sciences; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The low-pressure hollow cathode discharge made of a hollow circular tube and an anode is a type of simple structure discharge system. In particular, under the arc discharge mode, hollow cathodes have high plasma density and energy density with a wide range of adaptability of pressure and current. Low-pressure hollow cathode arc (HCA) discharges have been widely used as plasma sources in various fields such as manufacturing, vacuum welding, and aerospace since the 1960s. Despite the early experimental and applied researches on low-pressure HCA discharges, the basic theoretical study was relatively lagged much behind, resulting in many unanswered questions, such as the optimal discharge operating parameters, the power deposition inside the cathode, the causes of plasma instability, and how to effectively reduce cathode erosion and so on. Due to the special discharge structure of the hollow cathode, it is difficult to make an accurate experimental diagnosis, so a reasonable numerical simulation is an effective study method. However, up to now, there is still a lack of complete and effective numerical models which can evaluate various physical fields in the low-pressure hollow cathode discharges. To address the above problems and difficulties, a comprehensive and self-consistent 2D multi-physical coupling numerical model based on a commercial program of finite element method, the COMSOL Multiphysics, was provided in this paper. The model involves plasma transport, arc flow and heat transfer, and cathode thermal equilibrium, and can consider the effect of an applied magnetic field. The processes of secondary electron emission, thermal-field electron emission, ions and backflow high-energy electrons bombardment, and thermal radiation from the cathode surface are considered in the cathode thermal equilibrium process. Based on the above background, this paper works from the following aspects: In Chapter 1, the basic concepts of low-pressure HCA discharge including the hollow cathode effect, the basic characteristics, and operation modes were introduced firstly; Secondly, the application fields, development history, and overseas and domestic research status of hollow cathode discharge were reviewed; finally, the problems were presented and the research background was explained, and the research purpose of this paper was clarified. In Chapter 2, a complete and self-consistent numerical model of low-pressure hollow cathode discharge was proposed based on the fundamental theory and assumptions, and the set of control equations and boundary conditions in the model were elaborated. In addition, the electron energy distribution function, the collision processes, the solving tools of this model, and calculation schemes were introduced in detail. Finally, a validation example was given to test the rationality and applicability of the numerical model. In Chapter 3, the fundamental plasma properties of low-pressure hollow cathode arcs were investigated. Firstly, the ion Joule heating effect was studied. The results showed that the temperature distributions of the arc and cathode are only able to approach the experimental measurements after considering the ion Joule heating, which shows that the Joule heating of ions is crucial for the heating of the arc plasma. Secondly, by comparing the radial distribution of electron and ion density inside the cathode, the structure of the cathode sheath could be simulated well using this model. Finally, it was shown that the thermal radiation from the cathode surface is an important cooling mechanism of the cathode and only under higher surface emissivity can balance the larger heat flow given by the plasma to the cathode, and the temperature distribution of the cathode shows a non-monotonic increasing trend and is consistent with the profile of experimental measurement so that the so-called active zone is formed. In Chapter 4, the power deposition in the low-pressure HCA was studied in simulation. Two main aspects were considered: the power deposition into particles (both electrons and heavy particles) and the power deposition onto the cathode. It was found that the deposited power into particles increases with the rise of discharge current, but there is no effect on the total power deposition onto the cathode. In high-density plasmas, Coulomb collisions between electrons and ions also become very important, especially since a portion of the deposition energy on heavy particles comes mainly from the energy transfer from electrons to ions. It was also found that regardless of external parameters, half of the power deposition onto the cathode always comes from the particle contribution, while the other half is the net contribution of heat transfer and cathode radiation. The HCA model also allows the simulation of multiple discharge modes for low-pressure HCA discharges over a wide range of gas flow rates. It was also shown that the discharge operating conditions and the external magnetic field can change the distribution of the particle flow on the cathode wall. In Chapter 5, the ion sputtering erosion process on the cathode was simulated by coupling the HCA numerical model with the moving grid technique. The results showed that the ion sputtering erosion on the cathode depends on the ion flux and the plasma potential near the cathode wall and that their distribution and magnitude jointly determine the erosion morphology of the cathode. It was also found that the location of the most severe erosion on the cathode is located in the region of the densest ion flux on the cathode wall, rather than in the longitudinal correspondence with the central region of the internal positive column (IPC). The external magnetic fields can mitigate the cathode erosion and reduce the erosion depth, but stronger magnetic fields lead to a concentration of current density at the cathode tip, which can enhance erosion slightly at the cathode outlet end. Finally, the conclusions and innovation highlights were summarized, and prospects for future work were discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:178725 Serial 8323
Permanent link to this record
 

 
Author Van Loenhout, J.
Title Targeting pancreatic ductal adenocarcinoma and glioblastoma with oxidative stress-mediated treatment strategies : focus on tumor cell death and modulation of the tumor microenvironment Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 167 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Pancreatic ductal adenocarcinoma (PDAC) and glioblastoma multiforme (GBM) are two of the most malignant solid tumor types with poor survival rates, which underscore the urgency of novel and efficacious treatment strategies. Within the last decade, immunotherapy has been established as a breakthrough in cancer therapy. This mainly has been driven by the clinical data and approval associated with several immune checkpoint inhibitors (e.g. anti-CTLA-4 and anti-PD-1/L1). Despite the clinical benefit in specific tumor types, these inhibitors have not yet fulfilled their promise in low immunogenic tumors such as PDAC and GBM. Oxidative stress in cancer cells due to elevated reactive oxygen species (ROS) and an inability to balance intracellular redox state has recently been highlighted as promising target for anticancer treatment strategies with possible immunogenic effects. In this PhD dissertation, I investigated novel oxidative stress-mediated treatment approaches to target PDAC and GBM and to enhance immunogenicity by inducing immunogenic cell death (ICD). In the first part of this thesis (chapter 2), I reviewed the mechanistic responses of cancer cells towards different oxidative stress-inducing treatment strategies and their immunomodulating effects. The resulting literature demonstrated that different exogenous and endogenous ROS-inducing therapies show direct and indirect immunomodulating effects, which can be either immunostimulatory or immunosuppressive. One of the indirect immunostimulatory effects of the ROS-mediating therapies is the capacity of inducing immunogenic cell death (ICD) in tumor cells, which can increase the immunogenicity and consequently can trigger an antitumoral immune response. In chapter 3, I investigated a novel exogenous ROS-inducing treatment method, namely cold atmospheric plasma, to determine the therapeutic and ICD-inducing effects in PDAC, in vitro. I revealed that plasma-treated PBS (pPBS) has the potential to induce ICD in pancreatic cancer cells (PCCs) and to reduce the immunosuppressive tumor microenvironment (TME) by attacking the tumor supportive pancreatic stellate cells (PSCs). Although the cell death induced in PSCs was non-immunogenic as seen by the lack of danger-associated molecular patterns (DAMPs) emission and DC activation, I showed that pPBS could disrupt the physical barrier and lower the immunosuppressive secretion profile (lower TGF-β) of PSCs. In contrast, DAMPs were released by PCCs after treatment with pPBS which resulted in activation and maturation of DCs and a more immunostimulatory secretion profile (higher TNF-α, IFN-γ). Hence, indirect plasma treatment via pPBS has the potential to enhance immunogenicity in PDAC by triggering ICD and by attacking the immunosuppressive PSCs. Tumor cells can evolve adaptation mechanisms to protect themselves against intrinsic oxidative stress by upregulation of pro-survival molecules and their antioxidant defense system to maintain the redox balance. As such, tumor cells can become resistant towards exogenous ROS-inducing therapies, like plasma. Dual targeting of the redox balance of tumor cells by increasing exogenous levels of ROS and inhibiting the antioxidant defense system can maximally exploit ROS-mediated cell death mechanisms as therapeutic anticancer strategy. In this regard, cold atmospheric plasma was combined with auranofin, a thioredoxin reductase inhibitor, in GBM (chapter 4). A synergistic effect was shown after this combination treatment in 2D and 3D, however, in 3D only high concentrations of auranofin synergized with plasma treatment. I confirmed a ROS-mediated response after combination treatment, which was able to induce distinct cell death mechanisms, specifically apoptosis and ferroptosis. Additionally, the auranofin and plasma combined treatment strategy induced cell death, which resulted in an increased release of DAMPs. Together with the observed DC maturation, these results indicates the potential increase in immunogenicity, though, the phagocytotic capacity of DCs was inhibited by auranofin. In chapter 5, I evaluated this promising oxidative stress combination therapy in GBM, in vivo. A decrease in tumor kinetics and an increased survival in GBM-bearing mice was observed when auranofin was sequentially combined with direct plasma treatment. No T cell infiltration was observed after auranofin monotherapy. However, further characterization of the TME after the combination therapy is necessary to provide more insight in the immunogenic effects in vivo. In conclusion, this PhD dissertation comprises novel and important therapeutic and immunogenic insights in cold atmospheric plasma and auranofin as promising oxidative stress-mediated treatment strategies for low immunogenic tumors, like PDAC and GBM. These preclinical results provide a solid basis for future research towards combinations with immunotherapeutic approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:181309 Serial 8643
Permanent link to this record
 

 
Author Zheng, J.; Zhang, H.; Lv, J.; Zhang, M.; Wan, J.; Gerrits, N.; Wu, A.; Lan, B.; Wang, W.; Wang, S.; Tu, X.; Bogaerts, A.; Li, X.
Title Enhanced NH3Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS2 Type A1 Journal Article
Year 2023 Publication JACS Au Abbreviated Journal JACS Au
Volume 3 Issue 5 Pages 1328-1336
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract We have developed a sustainable method to produce NH3 directly from air using a plasma tandem-electrocatalysis system that operates via the N2−NOx−NH3 pathway. To efficiently reduce NO2− to NH3, we propose a novel electrocatalyst consisting of defective N-doped molybdenum sulfide nanosheets on vertical graphene arrays (N-MoS2/VGs). We used a plasma engraving process to form the metallic 1T phase, N doping, and S vacancies in the electrocatalyst simultaneously. Our system exhibited a remarkable NH3 production rate of 7.3 mg h−1 cm−2 at −0.53 V vs RHE, which is almost 100 times higher than the state-of-the-art electrochemical nitrogen reduction reaction and more than double that of other hybrid systems. Moreover, a low energy consumption of only 2.4 MJ molNH3−1 was achieved in this study. Density functional theory calculations revealed that S vacancies and doped N atoms play a dominant role in the selective reduction of NO2− to NH3. This study opens up new avenues for efficient NH3 production using cascade systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000981779300001 Publication Date 2023-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2691-3704 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (51976191, 5227060056, 52276214) and the National Key Technologies R&D Program of China (2018YFE0117300). N.G. was financially supported through an NWO Rubicon Grant (019.202EN.012). X.T. acknowl- edges the support of the Engineering and Physical Sciences Research Council (EP/X002713/1). Approved (up) Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:196761 Serial 8792
Permanent link to this record
 

 
Author Abduvokhidov, D.; Yusupov, M.; Shahzad, A.; Attri, P.; Shiratani, M.; Oliveira, M.C.; Razzokov, J.
Title Unraveling the Transport Properties of RONS across Nitro-Oxidized Membranes Type A1 Journal Article
Year 2023 Publication Biomolecules Abbreviated Journal Biomolecules
Volume 13 Issue 7 Pages 1043
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The potential of cold atmospheric plasma (CAP) in biomedical applications has received significant interest, due to its ability to generate reactive oxygen and nitrogen species (RONS). Upon exposure to living cells, CAP triggers alterations in various cellular components, such as the cell membrane. However, the permeation of RONS across nitrated and oxidized membranes remains understudied. To address this gap, we conducted molecular dynamics simulations, to investigate the permeation capabilities of RONS across modified cell membranes. This computational study investigated the translocation processes of less hydrophilic and hydrophilic RONS across the phospholipid bilayer (PLB), with various degrees of oxidation and nitration, and elucidated the impact of RONS on PLB permeability. The simulation results showed that less hydrophilic species, i.e., NO, NO2, N2O4, and O3, have a higher penetration ability through nitro-oxidized PLB compared to hydrophilic RONS, i.e., HNO3, s-cis-HONO, s-trans-HONO, H2O2, HO2, and OH. In particular, nitro-oxidation of PLB, induced by, e.g., cold atmospheric plasma, has minimal impact on the penetration of free energy barriers of less hydrophilic species, while it lowers these barriers for hydrophilic RONS, thereby enhancing their translocation across nitro-oxidized PLB. This research contributes to a better understanding of the translocation abilities of RONS in the field of plasma biomedical applications and highlights the need for further analysis of their role in intracellular signaling pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001035160000001 Publication Date 2023-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes This research was funded by the Innovative Development Agency of the Republic of Uzbekistan, grant number FZ-2020092817. Approved (up) Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:198154 Serial 8803
Permanent link to this record
 

 
Author Ghasemitarei, M.; Ghorbi, T.; Yusupov, M.; Zhang, Y.; Zhao, T.; Shali, P.; Bogaerts, A.
Title Effects of Nitro-Oxidative Stress on Biomolecules: Part 1—Non-Reactive Molecular Dynamics Simulations Type A1 Journal Article
Year 2023 Publication Biomolecules Abbreviated Journal Biomolecules
Volume 13 Issue 9 Pages 1371
Keywords A1 Journal Article; plasma medicine; reactive oxygen and; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071356400001 Publication Date 2023-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes This research received no external funding. Approved (up) Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:200380 Serial 8958
Permanent link to this record
 

 
Author Zaryouh, H.; Verswyvel, H.; Bauwens, M.; Van Haesendonck, G.; Deben, C.; Lin, A.; De Waele, J.; Vermorken, J.B.; Koljenovic, S.; Bogaerts, A.; Lardon, F.; Smits, E.; Wouters, A.
Title De belofte van hoofdhalskankerorganoïden in kankeronderzoek : een blik op de toekomst Type A2 Journal article
Year 2023 Publication Onco-hemato : multidisciplinair tijdschrift voor oncologie Abbreviated Journal
Volume 17 Issue 7 Pages 54-58
Keywords A2 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Hoofd-halskanker vormt een aanzienlijke uitdaging met bijna 900.000 nieuwe diagnoses per jaar, waarbij de jaarlijkse incidentie blijft stijgen. Vaak wordt de diagnose pas in een laat stadium gesteld, wat complexe behandelingen noodzakelijk maakt. Terugval van patiënten is helaas een veelvoorkomend probleem. De gemiddelde overlevingsduur is beperkt tot enkele maanden. Daarom is er een dringende behoefte om nieuwe, veelbelovende behandelingen te ontwikkelen voor patiënten met hoofd-halskanker. Voor het bereiken van deze vooruitgang spelen innovatieve studiemodellen een cruciale rol. Het ontwikkelen van deze nieuwe behandelingen start met laboratoriumonderzoek, waarbij traditionele tweedimensionale celculturen hun beperkingen hebben. Daarom verschuiven onderzoekers hun aandacht meer en meer naar geavanceerdere driedimensionale modellen, met hoofd-halskankerorganoïden als beloftevol nieuw model. Dit model behoudt immers zowel het genetische profiel als de morfologische kenmerken van de originele tumor van de hoofd-halskankerpatiënt. Hoofdhalskankerorganoïden bieden daarom de mogelijkheid om innovatieve behandelingen te testen en kunnen mogelijk zelfs de respons van een patiënt op bepaalde therapieën voorspellen. Hoewel tumororganoïden als ‘patiënt-in-het-lab’ veelbelovend zijn, zijn er uitdagingen te overwinnen, zoals de ontwikkelingstijd en de toepasbaarheid bij alle tumortypes, evenals het ontbreken van immuuncellen en andere micro-omgevingscomponenten. Er is daarom een grote behoefte aan gestandaardiseerde protocollen voor de ontwikkeling van organoïden en verkorting van de ontwikkelingstijd. Concluderend bieden driedimensionale hoofd-halskankerorganoïden een veelbelovend perspectief voor de toekomst van kankerbehandelingen. Ze hebben het potentieel om bij te dragen aan de ontwikkeling van gepersonaliseerde behandelingen en zo de overlevingskansen van kankerpatiënten te verbeteren. Het is echter belangrijk om hun voorspellend vermogen en toepassingsmogelijkheden verder te onderzoeken, voordat ze op grote schaal worden geïmplementeerd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2030-2738 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:202271 Serial 9004
Permanent link to this record
 

 
Author Xu, W.
Title Plasma-catalytic DRM : study of LDH derived catalyst for DRM in a GAP plasma system Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 350 p.
Keywords Doctoral thesis; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma is considered one of the promising technologies to solve greenhouse gas problems, as it can activate CO2 and CH4 at relatively low temperatures. Among the various types of plasmas, the gliding arc plasmatron (GAP) is promising, as it has a high level of non-equilibrium and high electron density. Nevertheless, the conversion of CO2 and CH4 in the GAP reactor is limited. Therefore, combining the GAP reactor with catalysts and making use of the heat produced by the plasma to provide thermal energy to the catalyst, forming a post-plasma catalytic (PPC) system, is hypothesized to improve its performance. Therefore, in this PhD research, we investigate important aspects of the PPC concept towards the use of the heat produced by GAP plasma to heat the plasma bed, without additional energy input. Aiming at this, based on a literature study (chapter 1), Ni-loaded layered double hydroxide (LDH) derived catalyst with good thermal catalytic DRM performance were chosen as the catalyst material. Before applying the LDH as a support material, the rehydration property of calcined LDH in moist and liquid environment was studied as part of chapter 2. The data indicated that after high temperatures calcination (600-900 C), the obtained layered double oxides (LDOs) can rehydrate into LDH, although, the rehydrated LDH were different from the original LDH. In chapter 3, different operating conditions, such as gas flow rate, gas compositions (e.g. CH4/CO2 ratio and nitrogen dilution), and addition of H2O were studied to investigate optimal conditions for PPC DRM, identifying possible differences in temperature profiles and exhaust gas compositions that might influence the catalytic performance. Subsequently, the impact of different PPC configurations, making use of the heat and exhaust gas composition produced by the GAP plasma, is shown in Chapter 4. Experiments studying the impact of adjusting the catalyst bed distance to the post-plasma, the catalyst amount, the influence of external heating (below 250 C) and the addition of H2O are discussed. As only limited improvement in the performance was achieved, a new type of catalyst bed was designed and utilized, as described in chapter 5. This improved configuration can realize better heat and mass transfer by directly connecting to the GAP device. The performance was improved and became comparable to the traditional thermal catalytic DRM results obtained at 800 C, although obtained by a fully electrically driven plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:201534 Serial 9074
Permanent link to this record
 

 
Author Vervloessem, E.
Title The role of pulsing and humidity in plasma-based nitrogen fixation : a combined experimental and modeling study Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 358 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nitrogen (N) is an indispensable building block for all living organisms as well as for pharmaceutical and chemical industry. In a nutshell, N is needed for plants to grow and beings to live and nitrogen fixation (NF) is the process that makes N available for plants as food by converting N2 into a reactive form, such as ammonia (NH3) or nitrogen oxides (NOx), upon reacting with O2 and H2. The aim of this thesis is to elucidate (wet) plasma-based nitrogen fixation with a focus on (1) the role of pulsing in achieving low energy consumption, (2) the role of H2O as a hydrogen source in nitrogen fixation and (3) elucidation of nitrogen fixation pathways in humid air and humid N2 plasma in a combined experimental and computational study. Furthermore, this thesis aims to take into account the knowledge-gaps and challenges identified in the discussion of the state of the art. Specifically, (1) we put our focus on branching out to another way of introducing water into the plasma system, i.e. H2O vapor, (2) we de-couple the problem for pathway elucidation by starting with characterization of the chosen plasma, next a simpler gas mixture and building up from there, (3) we include modelling, though not under wet conditions and (4) we focus on also analyzing species and performance outside liquid H2O. Firstly, based on the reaction analysis of a validated quasi-1D model, we can conclude that pulsing is indeed the key factor for energy-efficient NOx- formation, due to the strong temperature drop it causes. Secondly, the thesis shows that added H2O vapor, and not liquid H2O, is the main source of H for NH3 generation. Related to this, we discuss how the selectivity of plasma-based NF in humid air and humid N2 can be controlled by changing the humidity in the feed gas. Interestingly, NH3 production can be achieved in both N2 and air plasmas using H2O as a H source. Lastly, we identified a significant loss mechanism for NH3 and HNO2 that occurs in systems where these species are synthesized simultaneously, i.e. downstream from the plasma, HNO2 reacts with NH3 to form NH4NO2, which decomposes into N2 and H2O. This reduces the effective NF when not properly addressed, and should therefore be considered in future works aimed at optimizing plasma-based NF. In conclusion, this thesis adds further to the current state of the art of plasma-based NF both in the presence of H2O and in dry systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:197038 Serial 9088
Permanent link to this record
 

 
Author Le Compte, M.; Cardenas De La Hoz, E.; Peeters, S.; Rodrigues Fortes, F.; Hermans, C.; Domen, A.; Smits, E.; Lardon, F.; Vandamme, T.; Lin, A.; Vanlanduit, S.; Roeyen, G.; van Laere, S.; Prenen, H.; Peeters, M.; Deben, C.
Title Single-organoid analysis reveals clinically relevant treatment-resistant and invasive subclones in pancreatic cancer Type A1 Journal article
Year 2023 Publication npj Precision Oncology Abbreviated Journal
Volume 7 Issue 1 Pages 128-14
Keywords A1 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC)
Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, characterized by a treatment-resistant and invasive nature. In line with these inherent aggressive characteristics, only a subset of patients shows a clinical response to the standard of care therapies, thereby highlighting the need for a more personalized treatment approach. In this study, we comprehensively unraveled the intra-patient response heterogeneity and intrinsic aggressive nature of PDAC on bulk and single-organoid resolution. We leveraged a fully characterized PDAC organoid panel ( N  = 8) and matched our artificial intelligence-driven, live-cell organoid image analysis with retrospective clinical patient response. In line with the clinical outcomes, we identified patient-specific sensitivities to the standard of care therapies (gemcitabine-paclitaxel and FOLFIRINOX) using a growth rate-based and normalized drug response metric. Moreover, the single-organoid analysis was able to detect resistant as well as invasive PDAC organoid clones, which was orchestrates on a patient, therapy, drug, concentration and time-specific level. Furthermore, our in vitro organoid analysis indicated a correlation with the matched patient progression-free survival (PFS) compared to the current, conventional drug response readouts. This work not only provides valuable insights on the response complexity in PDAC, but it also highlights the potential applications (extendable to other tumor types) and clinical translatability of our approach in drug discovery and the emerging era of personalized medicine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001118015800001 Publication Date 2023-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-768x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:201455 Serial 9091
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title Supplementary Information for “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Supplementary information for the article “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” containing the videos of in-situ SEM imaging (mp4 files), raw data/images, and Jupyter notebooks (ipynb files) for data treatment and plots. Link to the preprint: https://doi.org/10.48550/arXiv.2308.15123 Explanation of the data files can be found in the Information.pdf file. The Videos folder contains the in-situ SEM image series mentioned in the paper. If there are any questions/bugs, feel free to contact me at lukas.grunewaldatuantwerpen.be
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:203389 Serial 9100
Permanent link to this record
 

 
Author Zaripov, A.A.; Khalilov, U.B.; Ashurov, K.B.
Title Synergism of the initial stage of removal of dielectric materials during electrical erosion processing in electrolytes Type A1 Journal article
Year 2023 Publication Surface engineering and applied electrochemistry Abbreviated Journal
Volume 59 Issue 6 Pages 712-718
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ceramics and composites, many of whose physicochemical properties significantly exceed similar properties of metals and their alloys, are processed qualitatively mainly by the electroerosion method. Despite the existing works, the mechanism of the initial stage of the removal of materials has not yet been identified. For a comprehensive understanding of the mechanism of the removal of dielectrics, a new model is proposed based on the experimental results obtained on an improved electroerosion installation. It was revealed that the initial stage of the removal of a dielectric material consists of three successive stages that are associated with the synergistic effect on the process of the anionic group of electrolytes, plasma flare, and the cavitation shock. This makes it possible to better understand the mechanism of the removal of composite and ceramic materials, which should contribute to ensuring the machinability of those materials and their wide use in promising technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001126070700009 Publication Date 2023-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1068-3755; 1934-8002 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:202754 Serial 9102
Permanent link to this record
 

 
Author Biondo, O.
Title Towards a fundamental understanding of energy-efficient, plasma-based CO<sub>2</sub> conversion Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 221 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-based CO2 conversion is worldwide gaining increasing interest. The aim of this work is to find potential pathways to improve the energy efficiency of plasma-based CO2 conversion beyond what is feasible for thermal chemistry. To do so, we use a combination of modeling and experiments to better understand the underlying mechanisms of CO2 conversion, ranging from non-thermal to thermal equilibrium conditions. Zero-dimensional (0D) chemical kinetics modelling, describing the detailed plasma chemistry, is developed to explore the vibrational kinetics of CO2, as the latter is known to play a crucial role in the energy efficient CO2 conversion. The 0D model is successfully validated against pulsed CO2 glow discharge experiments, enabling the reconstruction of the complex dynamics underlying gas heating in a pure CO2 discharge, paving the way towards the study of gas heating in more complex gas mixtures, such as CO2 plasmas with high dissociation degrees. Energy-efficient, plasma-based CO2 conversion can also be obtained upon the addition of a reactive carbon bed in the post-discharge region. The reaction between solid carbon and O2 to form CO allows to both reduce the separation costs and increase the selectivity towards CO, thus, increasing the energy efficiency of the overall conversion process. In this regard, a novel 0D model to infer the mechanism underlying the performance of the carbon bed over time is developed. The model outcome indicates that gas temperature and oxygen complexes formed at the surface of solid carbon play a fundamental and interdependent role. These findings open the way towards further optimization of the coupling between plasma and carbon bed. Experimentally, it has been demonstrated that “warm” plasmas (e.g. microwave or gliding arc plasmas) can yield very high energy efficiency for CO2 conversion, but typically only at reduced pressure. For industrial application, it will be important to realize such good energy efficiency at atmospheric pressure as well. However, recent experiments illustrate that the microwave plasma at atmospheric pressure is too close to thermal conditions to achieve a high energy efficiency. Hence, we use a comprehensive set of advanced diagnostics to characterize the plasma and the reactor performance, focusing on CO2 and CO2/CH4 microwave discharges. The results lead to a deeper understanding of the mechanism of power concentration with increasing pressure, typical of plasmas in most gases, which is of great importance for model validation and understanding of reactor performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) Most recent IF: NA
Call Number UA @ admin @ c:irua:197213 Serial 9108
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
Title Ab initio spectroscopy and thermochemistry of the BN molecule Type A1 Journal article
Year 1991 Publication Zeitschrift für Physik : D : atoms, molecules and clusters Abbreviated Journal
Volume 21 Issue Pages 47-55
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos A1991GA17200008 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0178-7683 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 17 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:714 Serial 34
Permanent link to this record
 

 
Author Martin, J.M.L.; Taylor, P.R.; François, J.P.; Gijbels, R.
Title Ab initio study of the spectroscopy, kinetics, and thermochemistry of the BN2 molecule Type A1 Journal article
Year 1994 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
Volume 222 Issue Pages 517-523
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1994NN02600016 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 14 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:10255 Serial 36
Permanent link to this record
 

 
Author Martin, J.M.L.; Taylor, P.R.; François, J.P.; Gijbels, R.
Title Ab initio study of the spectroscopy, kinetics, and thermochemistry of the C2N and CN2 molecules Type A1 Journal article
Year 1994 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
Volume 226 Issue 5/6 Pages 475-483
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Several structures and electronic states of the C2N and CN2 molecules have been studied using complete active space SCF (CASSCF), multireference configuration interaction (MRCI), and coupled cluster (CCSD(T)) methods. Both molecules are very stable. Our best computed total atomization energies SIGMAD(e) are 288.6 +/- 2 kcal/mol for CN2, and 294.1 +/- 2 kcal/mol for C2N. The CNC and CCN structures for C2N are nearly isoenergetic. CNN(3PI) lies about 30 kcal/mol above NCN(3PI(g)), but has a high barrier towards interconversion and is therefore observed experimentally. Computed harmonic frequencies for CNN are sensitive to the correlation treatment: they are reproduced well using multireference methods as well as the CCSD(T) method. High spin contamination has a detrimental effect on computed harmonic frequencies at the CCSD(T) level.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1994PE00500008 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 46 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:10256 Serial 37
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
Title Ab initio study of the structure, infrared spectra and heat of formation of C4 Type A1 Journal article
Year 1991 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 94 Issue Pages 3753-3761
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1991FA77800052 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.952 Times cited 62 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:715 Serial 38
Permanent link to this record
 

 
Author Taylor, P.R.; Martin, J.M.L.; François, J.P.; Gijbels, R.
Title An ab initio study of the C3+ cation using multireference methods Type A1 Journal article
Year 1991 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 95 Issue Pages 6530-6534
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record
Impact Factor 2.952 Times cited Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:720 Serial 39
Permanent link to this record
 

 
Author Cai, Z.L.; Martin, J.M.L.; François, J.P.; Gijbels, R.
Title Ab initio study of the X2\Sigma+ and A 2\Pi states of the SiN radical Type A1 Journal article
Year 1996 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
Volume 252 Issue 5/6 Pages 398-404
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The equilibrium bond length, harmonic frequency, first and second order anharmonicity constants, rotational and centrifugal distortion constants, as well as the rotation-vibrational and centrifugal coupling constants for the ground X(2) Sigma(+) and first excited A(2) Pi states of the SiN radical have been calculated at the complete active space SCF (CASSCF), multireference CI (MRCI) and coupled cluster (CCSD(T)) levels using Dunning's correlation-consistent basis sets. The excitation energy of the A(2) Pi State has also been computed at these theoretical levels. Dipole moments of SiN in the X(2) Sigma(+) and A(2) Pi states are given. Our study shows that core correlation must be considered in order to obtain satisfactory accuracy for the spectroscopic constants.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1996UJ45000017 Publication Date 2003-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 28 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:12328 Serial 40
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
Title Accurate ab initio quartic force fields and thermochemistry of FNO and CINO Type A1 Journal article
Year 1994 Publication The journal of physical chemistry Abbreviated Journal
Volume 98 Issue 44 Pages 11394-11400
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The quartic force fields of FNO and CINO have been computed at the CCSD(T)/cc-pVTZ level. Using an ''augmented'' basis set dramatically improves results for FNO but has no significant effect for CINO. The best computed force field for FNO yields harmonic frequencies and fundamentals in excellent agreement with experiment. Overall, the force fields proposed in the present work are probably the most reliable ones ever published for these molecules. Total atomization energies have been computed using basis sets of spdfg quality: our best estimates are Sigma D-0 = 208.5 +/- 1 and 185.4 +/- 1 kcal/mol for FN0 and CINO, respectively. The computed value for FNO suggests a problem with the established experimental heat of formation. Thermodynamic tables in JANAF style at 100-2000 K are presented for both FNO and CINO.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos A1994PP89400022 Publication Date 2005-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3654;1541-5740; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 21 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:12310 Serial 44
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
Title Accurate ab initio quartic force fields for the sulfur compounds H2S, CS2, OCS and CS Type A1 Journal article
Year 1995 Publication Journal of molecular spectroscopy Abbreviated Journal J Mol Spectrosc
Volume 169 Issue Pages 445-457
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1995QD98400014 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2852; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.482 Times cited 37 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:12277 Serial 45
Permanent link to this record
 

 
Author Vandelannoote, R.; Blommaert, W.; van Grieken, R.; Gijbels, R.
Title L'analyse des eaux géothermales par spectrométrie de masse à étincelles Type A3 Journal article
Year 1979 Publication Spectra 2000: la revue de l'instrumentation Abbreviated Journal
Volume 53 Issue Pages 66
Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0399-1172 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:116645 Serial 98
Permanent link to this record
 

 
Author Vandelannoote, R.; Blommaert, W.; Gijbels, R.; van Grieken, R.
Title Analysis of geothermal waters by spark source mass spectrometry Type A3 Journal article
Year 1981 Publication Fresenius' Zeitschrift für analytische Chemie Abbreviated Journal
Volume 309 Issue 4 Pages 291-294
Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Although the analysis of thermal water by spark-source mass spectrometry (SSMS) is rather timeconsuming, it allows the detection of about 20 elements of geochemical interest down to the ppb-level. A physical preconcentration is proposed in order to collect elements having quite different chemical properties, e.g. alkalis, transition elements, and elements occurring in anionic form. The relative sensitivity factors appear to be rather independent of the salt content of the graphite electrodes. Contrary to neutron activation analysis, SSMS has a quite uniform elemental sensitivity, and allows to determine elements for which neutron activation is not suitable, e.g. Sn and Pb. The precision of SSMS is however by a factor of about 2 worse than that obtained for neutron activation.
Address
Corporate Author Thesis
Publisher Place of Publication München Editor
Language Wos Publication Date 2004-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-1152;1618-2650; ISBN Additional Links UA library record
Impact Factor Times cited 8 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:116638 Serial 100
Permanent link to this record
 

 
Author van Straaten, M.; Swenters, K.; Gijbels, R.; Verlinden, J.; Adriaenssens, E.
Title Analysis of platinum powder by glow discharge mass spectrometry Type A1 Journal article
Year 1994 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 9 Issue Pages 1389-1397
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1994PY14900012 Publication Date 2004-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.466 Times cited 17 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:10253 Serial 103
Permanent link to this record
 

 
Author Geuens, I.; Gijbels, R.; Jacob, W.A.; Verbeeck, A.; de Keyzer, R.
Title Analysis of silver halide microcrystals using different modes of a scanning transmission electron microscope and digital image processing Type A1 Journal article
Year 1992 Publication The journal of imaging science and technology Abbreviated Journal J Imaging Sci Techn
Volume 36 Issue 6 Pages 534-539
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Springfield, Va Editor
Language Wos A1992KE66100006 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1062-3701 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.349 Times cited 10 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:3732 Serial 104
Permanent link to this record
 

 
Author Veldeman, E.; Van 't dack, L.; Gijbels, R.; Campbell, M.; Vanhaecke, F.; Vanhoe, H.; Vandecasteele, C.
Title Analysis of thermal waters by ICP-MS Type H3 Book chapter
Year 1991 Publication Abbreviated Journal
Volume Issue Pages 25-33
Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher The Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:707 Serial 105
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
Title The anharmonic force field of thioformaldehyde, H2CS Type A1 Journal article
Year 1994 Publication Journal of molecular spectroscopy Abbreviated Journal J Mol Spectrosc
Volume 168 Issue Pages 363-373
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1994PU60800015 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2852 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.482 Times cited 18 Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:10259 Serial 119
Permanent link to this record
 

 
Author Gijbels, R.; van Grieken, R.
Title Application of analytical methods for trace elements in geothermal waters : part 1 : Amélie-les-Bains (Eastern Pyrenees) Type MA3 Book as author
Year 1977 Publication Abbreviated Journal
Volume Issue Pages
Keywords MA3 Book as author; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved (up) no
Call Number UA @ lucian @ c:irua:117471 Serial 139
Permanent link to this record