|   | 
Details
   web
Records
Author Lin, K.; Lebedev, O.I.; Van Tendeloo, G.; Jacobs, P.A.; Pescarmona, P.P.
Title Titanosilicate beads with hierarchical porosity : synthesis and application as epoxidation catalysts Type A1 Journal article
Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 16 Issue 45 Pages 13509-13518
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Porous titanosilicate beads with a diameter of 0.51.5 mm (TiSil-HPB-60) were synthesized from a preformed titanosilicate solution with a porous anion-exchange resin as template. The bead format of this material enables its straightforward separation from the reaction mixture in its application as a liquid-phase heterogeneous catalyst. The material displays hierarchical porosity (micro/mesopores) and incipient TS-1 structure building units. The titanium species are predominantly located in tetrahedral framework positions. TiSil-HPB-60 is a highly active catalyst for the epoxidation of cyclohexene with t-butyl hydroperoxide (TBHP) and aqueous H2O2. With both oxidants, TiSil-HPB-60 gave higher epoxide yields than Ti-MCM-41 and TS-1. The improved catalytic performance of TiSil-HPB-60 is mainly ascribed to the large mesopores favoring the diffusion of reagents and products to and from the titanium active sites. The epoxide yield and selectivity could be further improved by silylation of the titanosilicate beads. Importantly, TiSil-HPB-60 is a stable catalyst immune to titanium leaching, and can be easily recovered and reused in successive catalytic cycles without significant loss of activity. Moreover, TiSil-HPB-60 is active and selective in the epoxidation of a wide range of bulky alkenes.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000285398400029 Publication Date 2010-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 38 Open Access
Notes Iap; Goa Approved Most recent IF: 5.317; 2011 IF: 5.925
Call Number UA @ lucian @ c:irua:88153 Serial 3668
Permanent link to this record
 

 
Author Philippaerts, A.; Paulussen, S.; Breesch, A.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Sels, B.; Jacobs, P.
Title Unprecedented shape selectivity in hydrogenation of triacylglycerol molecules with Pt/ZSM-5 zeolite Type A1 Journal article
Year 2011 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 50 Issue 17 Pages 3947-3949
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Well tuned: ZSM-5 with platinum nanoparticles preferably hydrogenates trans fatty acids over cis isomers in model triacylglycerols for geometric reasons. The central fatty acid chain reacts faster, pointing to pore mouth adsorption in a tuning fork conformation (see picture). This conformation induces stepwise hydrogenation, resulting in fast removal of the unstable central triene, while formation of saturated chains is limited.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000289514100025 Publication Date 2011-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 31 Open Access
Notes Approved Most recent IF: 11.994; 2011 IF: 13.455
Call Number UA @ lucian @ c:irua:88381 Serial 3814
Permanent link to this record
 

 
Author Simon, Q.; Barreca, D.; Gasparotto, A.; Maccato, C.; Montini, T.; Gombac, V.; Fornasiero, P.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.
Title Vertically oriented CuO/ZnO nanorod arrays : from plasma-assisted synthesis to photocatalytic H2 production Type A1 Journal article
Year 2012 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 22 Issue 23 Pages 11739-11747
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract 1D CuO/ZnO nanocomposites were grown on Si(100) substrates by means of an original two-step synthetic strategy. ZnO nanorod (NR) arrays were initially deposited by plasma enhanced-chemical vapor deposition (PE-CVD) from an ArO2 atmosphere. Subsequently, tailored amounts of CuO were dispersed over zinc oxide matrices by radio frequency (RF)-sputtering of Cu from Ar plasmas, followed by thermal treatment in air. A thorough characterization of the obtained systems was carried out by X-ray photoelectron and X-ray excited-Auger electron spectroscopies (XPS and XE-AES), glancing incidence X-ray diffraction (GIXRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) and energy filtered-TEM (EF-TEM). Pure and highly oriented CuO/ZnO NR arrays, free from ternary ZnCuO phases and characterized by a copper(II) oxide content controllable as a function of the adopted RF-power, were successfully obtained. Interestingly, the structural relationships between the two oxides at the CuO/ZnO interface were found to depend on the overall CuO loading. The obtained nanocomposites displayed promising photocatalytic performances in H2 production by reforming of ethanolwater solutions under simulated solar illumination, paving the way to the sustainable conversion of solar light into chemical energy.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000304351400046 Publication Date 2012-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 74 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:98382 Serial 3840
Permanent link to this record
 

 
Author Kremer, S.P.B.; Kirschhock, C.E.A.; Aerts, A.; Aerts, C.A.; Houthoofd, K.J.; Grobet, P.J.; Jacobs, P.A.; Lebedev, O.I.; Van Tendeloo, G.; Martens, J.A.
Title Zeotile-2: a microporous analogue of MCM-48 Type A1 Journal article
Year 2005 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume 7 Issue 7 Pages 861-867
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000230259500006 Publication Date 2005-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 10 Open Access
Notes Approved Most recent IF: 1.811; 2005 IF: 1.708
Call Number UA @ lucian @ c:irua:54702 Serial 3931
Permanent link to this record
 

 
Author Bekermann, D.; Gasparotto, A.; Barreca, D.; Devi, A.; Fischer, R.A.; Kete, M.; Štangar, U.L.; Lebedev, O.I.; Maccato, C.; Tondello, E.; Van Tendeloo, G.
Title ZnO nanorod arrays by plasma-enhanced CVD for light-activated functional applications Type A1 Journal article
Year 2010 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 11 Issue 11 Pages 2337-2340
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Switch of the surface properties: Supported ZnO nanorod arrays with tailored roughness and aspect ratios are successfully synthesized by plasma-enhanced chemical vapor deposition. Such nanostructures exhibit significant superhydrophilic and photocatalytic properties tunable as a function of their morphological organization (see picture). This renders them promising building blocks for the fabrication of stimuli-responsive materials.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000281061500008 Publication Date 2010-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 38 Open Access
Notes Esteem 026019 Approved Most recent IF: 3.075; 2010 IF: 3.340
Call Number UA @ lucian @ c:irua:84594 Serial 3935
Permanent link to this record
 

 
Author Lebedev, O.I.; Turner, S.; Caignaert, V.; Cherepanov, V.A.; Raveau, B.
Title Exceptional layered ordering of cobalt and iron in perovskites Type A1 Journal article
Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 28 Issue 28 Pages 2907-2911
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375810400005 Publication Date 2016-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 4 Open Access
Notes Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:133640 Serial 4178
Permanent link to this record
 

 
Author Shen, Y.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.; Song, X.; Yu, X.; Wang, Q.; Chen, H.; Dayeh, S.A.; Wu, T.
Title Size-Induced Switching of Nanowire Growth Direction: a New Approach Toward Kinked Nanostructures Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue 21 Pages 3687-3695
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Exploring self-assembled nanostructures with controllable architectures has been a central theme in nanoscience and nanotechnology because of the tantalizing perspective of directly integrating such bottom-up nanostructures into functional devices. Here, the growth of kinked single-crystal In2O3 nanostructures consisting of a nanocone base and a nanowire tip with an epitaxial and defect-free transition is demonstrated for the first time. By tailoring the growth conditions, a reliable switching of the growth direction from [111] to [110] or [112] is observed when the Au catalyst nanoparticles at the apexes of the nanocones shrink below approximate to 100 nm. The natural formation of kinked nanoarchitectures at constant growth pressures is related to the size-dependent free energy that changes for different orientations of the nanowires. The results suggest that the mechanism of forming such kinked nanocone-nanowire nanostructures in well-controlled growth environment may be universal for a wide range of functional materials.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000377597400014 Publication Date 2016-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 2 Open Access
Notes Approved Most recent IF: 12.124
Call Number UA @ lucian @ c:irua:144705 Serial 4687
Permanent link to this record
 

 
Author Shen, Y.; Turner, S.; Yang, P.; Van Tendeloo, G.; Lebedev, O.I.; Wu, T.
Title Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations Type A1 Journal article
Year 2014 Publication Nano letters Abbreviated Journal Nano Lett
Volume 14 Issue 8 Pages 4342-4351
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vaporliquidsolid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000340446200022 Publication Date 2014-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 33 Open Access
Notes European Union Seventh Framework Programme under Grant 312483 – ESTEEM; FWOl; esteem2_ta Approved Most recent IF: 12.712; 2014 IF: 13.592
Call Number UA @ lucian @ c:irua:118622 Serial 1075
Permanent link to this record
 

 
Author Volkova, N.E.; Lebedev, O.I.; Gavrilova, L.Y.; Turner, S.; Gauquelin, N.; Seikh, M.M.; Caignaert, V.; Cherepanov, V.A.; Raveau, B.; Van Tendeloo, G.
Title Nanoscale ordering in oxygen deficient quintuple perovskite Sm2-\epsilonBa3+\epsilonFe5O15-\delta : implication for magnetism and oxygen stoichiometry Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 21 Pages 6303-6310
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The investigation of the system SmBaFe-O in air has allowed an oxygen deficient perovskite Sm2-epsilon Ba3+epsilon Fe5O15-delta (delta = 0.75, epsilon = 0.125) to be synthesized. In contrast to the XRPD pattern which gives a cubic symmetry (a(p) = 3.934 angstrom), the combined HREM/EELS study shows that this phase is nanoscale ordered with a quintuple tetragonal cell, a(p) X a(p) X 5(ap). The nanodomains exhibit a unique stacking sequence of the A-site cationic layers along the crystallographic c-axis, namely SmBaBa/SmBa/SmBaSm, and are chemically twinned in the three crystallographic directions. The nanoscale ordering of this perovskite explains its peculiar magnetic properties on the basis of antiferromagnetic interactions with spin blockade at the boundary between the nanodomains. The variation of electrical conductivity and oxygen content of this oxide versus temperature suggest potential SOFC applications. They may be related to the particular distribution of oxygen vacancies in the lattice and to the 3d(5)(L) under bar configuration of iron.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344905600029 Publication Date 2014-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 16 Open Access
Notes The UrFU authors were financially supported by the Ministry of Education and Science of Russian Federation (project N 4.1039.2014/K) and by UrFU under the Framework Program of development of UrFU through the «Young scientists UrFU» competition. The CRISMAT authors gratefully acknowledge the EC, the CNRS and the French Minister of Education and Research for financial support through their Research, Strategic and Scholarship programs. This work was supported by funding from the European Research Council under the Seventh Framework Program (FP7), ERC grant N°246791 – COUNTATOMS. S.T. gratefully acknowledges the fund for scientific research Flanders for a post-doctoral fellowship and for financial support under contract number G004413N. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC starting grant number 278510 – VORTEX; ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:122137 Serial 2269
Permanent link to this record
 

 
Author Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Amelinckx, S.; Ravazi, F.S.; Habermeier, H.-U.
Title Structure and microstructure of La1-xSrxMnO3 (x=0.16) films grown on a SrTiO3(110) substrate Type A1 Journal article
Year 2001 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal Philos Mag A
Volume 81 Issue 12 Pages 2865-2884
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000172348000008 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.136 Times cited 12 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:57132 Serial 3290
Permanent link to this record
 

 
Author Verbeeck, J.; Lebedev, O.I.; Van Tendeloo, G.; Mercey, B.
Title SrTiO3(100)/(LaMnO3)m(SrMnO3)n layered heterostructures: a combined EELS and TEM study Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 66 Issue 18 Pages 184426
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxially grown heterostructures consisting of alternating layers of LaMnO(3) (LMO, 9 or 15 unit cells) and SrMnO(3) (SMO, 4 or 6 unit cells) on a SrTiO(3)(100) (STO(100)) substrate have been studied by a combination of high resolution transmission electron microscopy (HRTEM), electron diffraction, quantitative electron energy loss spectroscopy (EELS) with model fitting, energy filtered TEM (EFTEM) and imaging spectroscopy on an atomic scale. The combination of these techniques is necessary for the structural, chemical, and electronic characterization of these heterostructures. A model is proposed containing chemically and structurally sharp interfaces. The SrMnO(3) layers are stabilized in a Pm3m structure between two LMO layers. Tensile stress causes oxygen deficiency in the SMO layers increasing the number of 3d electrons on the Mn sites to resemble the Mn(3+) sites in LMO. The energy loss near edge structure (ELNES) of O and Mn is compared for both LMO and SMO layers and shows that the Mn-O bonds have a partially covalent character. The absence of a strong valency effect in the Mn ELNES is due to the oxygen vacancies in SMO.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000179633100062 Publication Date 2002-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:54741 Serial 3563
Permanent link to this record
 

 
Author Maccato, C.; Simon, Q.; Carraro, G.; Barreca, D.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.
Title Zinc and copper oxides functionalized with metal nanoparticles : an insight into their nano-organization Type A1 Journal article
Year 2012 Publication Journal of advanced microscopy research Abbreviated Journal
Volume 7 Issue 2 Pages 84-90
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ag/ZnO and Au/CuxO (x = 1, 2) nanocomposites supported on Si(100) and polycrystalline Al2O3 were synthesised by hybrid approaches, combining chemical vapor deposition (either thermal or plasma-assisted) of host oxide matrices and subsequent radio frequency-sputtering of guest metal particles. The influence of the adopted synthetic parameters on the nanocomposite morphological and compositional features was investigated by field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Results confirm the synthesis of ZnO and CuxO nanoarchitectures, characterized by a tailored morphology and an intimate metal/oxide contact. A careful control of the processing conditions enabled a fine tuning of the mutual constituent distribution, opening thus attractive perspectives for the engineering of advanced nanomaterials.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2012-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-7573;2156-7581; ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Esteem Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:105298 Serial 3932
Permanent link to this record
 

 
Author Bigiani, L.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O.I.; Morante, J.R.; Barreca, D.; Maccato, C.
Title Au-manganese oxide nanostructures by a plasma-assisted process as electrocatalysts for oxygen evolution : a chemico-physical investigation Type A1 Journal article
Year 2020 Publication Advanced sustainable systems Abbreviated Journal
Volume Issue Pages 2000177-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Earth-abundant and eco-friendly manganese oxides are promising platforms for the oxygen evolution reaction (OER) in water electrolysis. Herein, a versatile and potentially scalable route to gold-decorated manganese oxide-based OER electrocatalysts is reported. In particular, MnxOy(MnO2, Mn2O3) host matrices are grown on conductive glasses by plasma assisted-chemical vapor deposition (PA-CVD), and subsequently functionalized with gold nanoparticles (guest) as OER activators by radio frequency (RF)-sputtering. The final selective obtainment of MnO2- or Mn2O3-based systems is then enabled by annealing under oxidizing or inert atmosphere, respectively. A detailed material characterization evidences the formation of high-purity Mn(x)O(y)dendritic nanostructures with an open morphology and an efficient guest dispersion into the host matrices. The tailoring of Mn(x)O(y)phase composition and host-guest interactions has a remarkable influence on OER activity yielding, for the best performing Au/Mn(2)O(3)system, a current density of approximate to 5 mA cm(-2)at 1.65 V versus the reversible hydrogen electrode (RHE) and an overpotential close to 300 mV at 1 mA cm(-2). Such results, comparing favorably with literature data on manganese oxide-based materials, highlight the importance of compositional control, as well as of surface and interface engineering, to develop low-cost and efficient anode nanocatalysts for water splitting applications.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000572376000001 Publication Date 2020-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2366-7486 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.1 Times cited 4 Open Access Not_Open_Access
Notes ; Padova University (DOR 2017-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects), as well as the INSTM Consortium (INSTMPD004 – NETTUNO project) and AMGA Foundation (Mn4Energy project), are gratefully acknowledged for financial support. The Qu-Ant-EM microscope was partially funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from a GOA project “Solarpaint” from the University of Antwerp and from EU H2020 823717 ESTEEM3 project. The authors thank Dr. Daniele Valbusa, Dr. Gianluca Corr, Dr. Andrea Gallo, and Dr. Dileep Khrishnan for helpful experimental assistance. ; esteem3TA; esteem3reported Approved Most recent IF: 7.1; 2020 IF: NA
Call Number UA @ admin @ c:irua:171937 Serial 6457
Permanent link to this record
 

 
Author Bigiani, L.; Barreca, D.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O.I.; Morante, J.R.; Maccato, C.
Title Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process Type A1 Journal article
Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
Volume 284 Issue Pages 119684
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electrolysis of seawater, a significantly more abundant natural reservoir than freshwater, stands as a promising alternative for sustainable hydrogen production, provided that the competitive chloride electro-oxidation is minimized. Herein, we propose an original material combination to selectively trigger oxygen evolution from seawater at expenses of chlorine generation. The target systems, based on MnO2 or Mn2O3 decorated with Fe2O3 or Co3O4, are fabricated by plasma enhanced-chemical vapor deposition of manganese oxides, functionalization with Fe2O3 and Co3O4 by sputtering, and annealing in air/Ar to obtain Mn(IV)/Mn(III) oxides. Among the various options, MnO2 decorated with Co3O4 yields the best performances in alkaline seawater splitting, with an outstanding Tafel slope of approximate to 40 mV x dec(-1) and an overpotential of 450 mV, enabling to rule out chlorine evolution. These attractive performances, resulting from the synergistic contribution of catalytic and electronic effects, open the door to low-cost hydrogen generation from seawater under real-world conditions, paving the way to eventual large-scale applications.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000623591500008 Publication Date 2020-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 67 Open Access OpenAccess
Notes The authors thank Padova University (DOR 2017–2020 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects), as well as the INSTM Consortium (INSTMPD004 – NETTUNO project) and AMGA Foundation (Mn4Energy project), for financial support. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from a GOA project 'Solarpaint' (University of Antwerp) and from the EU-H2020 programme (grant agreement No. 823717 – ESTEEM3). J.R.M. and T.A. acknowledge Generalitat de Catalunya for financial support through the CERCA Programme, 27 M2E (2017SGR1246) and by ERDEF-MINECO coordinated projects ENE2017-85087-C3 and ENE2016-80788-C5-5-R. Thanks are also due to Proff. Gloria Tabacchi and Ettore Fois (Department of Science and High Technology, Insubria University, Como, Italy) for valuable discussions and support. Dr. Daniele Valbusa, Dr. Gianluca Corrò, Dr. Andrea Gallo and Dr. Dileep Khrishnan are gratefully acknowledged for helpful technical assistance. Approved Most recent IF: 9.446
Call Number UA @ admin @ c:irua:176718 Serial 6733
Permanent link to this record