toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Cassidy, S.J.; Batuk, M.; Batuk, D.; Hadermann, J.; Woodruff, D.N.; Thompson, A.L.; Clarke, S.J.
  Title Complex Microstructure and Magnetism in Polymorphic CaFeSeO Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 55 Issue 55 Pages 10714-10726
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The structural complexity of the antiferromagnetic oxide selenide CaFeSeO is described. The compound contains puckered FeSeO layers composed of FeSe2O2 tetrahedra sharing all their vertexes. Two polymorphs coexist that can be derived from an archetype BaZnSO structure by cooperative tilting of the FeSe2O2 tetrahedra. The polymorphs differ in the relative arrangement of the puckered layers of vertex-linked FeSe2O2 tetrahedra. In a noncentrosymmetric Cmc21 polymorph (a = 3.89684(2) A, b = 13.22054(8) A, c = 5.93625(2) A) the layers are related by the C-centering translation, while in a centrosymmetric Pmcn polymorph, with a similar cell metric (a = 3.89557(6) A, b = 13.2237(6) A, c = 5.9363(3) A), the layers are related by inversion. The compound shows long-range antiferromagnetic order below a Neel temperature of 159(1) K with both polymorphs showing antiferromagnetic coupling via Fe-O-Fe linkages and ferromagnetic coupling via Fe-Se-Fe linkages within the FeSeO layers. The magnetic susceptibility also shows evidence for weak ferromagnetism which is modeled in the refinements of the magnetic structure as arising from an uncompensated spin canting in the noncentrosymmetric polymorph. There is also a spin glass component to the magnetism which likely arises from the disordered regions of the structure evident in the transmission electron microscopy.
  Address (up) Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QR, United Kingdom
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000385785700085 Publication Date 2016-10-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.857 Times cited 6 Open Access
  Notes We acknowledge the financial support of the EPSRC (Grants EP/I017844/1 and EP/M020517/1), the Leverhulme Trust (RPG-2014-221), and the Diamond Light Source (studentship support for S. J. Cassidy). We thank the ESTEEM2 network for enabling the electron microscopy investigations and the ISIS facility and the Diamond Light Source Ltd. for the award of beam time. We thank Dr. P. Manuel for assistance on WISH, Dr. R. I. Smith for assistance on GEM and POLARIS, and Dr. C. Murray and Dr. A. Baker for assistance on I11. Approved Most recent IF: 4.857
  Call Number EMAT @ emat @ c:irua:136823 Serial 4312
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.K.; Sunkara, M.K.; Bogaerts, A.
  Title Plasma Catalysis: Synergistic Effects at the Nanoscale Type A1 Journal article
  Year 2015 Publication Chemical reviews Abbreviated Journal Chem Rev
  Volume 115 Issue 115 Pages 13408-13446
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Thermal-catalytic gas processing is integral to many current industrial processes. Ever-increasing demands on conversion and energy efficiencies are a strong driving force for the development of alternative approaches. Similarly, synthesis of several functional materials (such as nanowires and nanotubes) demands special processing conditions. Plasma catalysis provides such an alternative, where the catalytic process is complemented by the use of plasmas that activate the source gas. This combination is often observed to result in a synergy between plasma and catalyst. This Review introduces the current state-of-the-art in plasma catalysis, including numerous examples where plasma catalysis has demonstrated its benefits or shows future potential, including CO2 conversion, hydrocarbon reforming, synthesis of nanomaterials, ammonia production, and abatement of toxic waste gases. The underlying mechanisms governing these applications, as resulting from the interaction between the plasma and the catalyst, render the process highly complex, and little is known about the factors leading to the often-observed synergy. This Review critically examines the catalytic mechanisms relevant to each specific application.
  Address (up) Department of Chemistry, Research Group PLASMANT, Universiteit Antwerpen , Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000367563000006 Publication Date 2015-11-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2665 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 47.928 Times cited 204 Open Access
  Notes ECN and AB gratefully acknowledge financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant Number G.0217.14N. KO acknowledges partial support by the Australian Research Council and CSIRO’s OCE Science Leaders Program. MKS acknowledges partial support from US National Science Foundation through grants DMS 1125909 and EPSCoR 1355448 and also PhD students Babajide Ajayi, Apolo Nambo and Maria Carreon for their help. Approved Most recent IF: 47.928; 2015 IF: 46.568
  Call Number c:irua:130001 Serial 3993
Permanent link to this record
 

 
Author Bercx, M.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
  Title First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 18 Issue 18 Pages 20542-20549
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency.
  Address (up) EMAT & CMT groups, Department of Physics, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium. marnik.bercx@uantwerpen.be
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000381428600058 Publication Date 2016-07-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 34 Open Access
  Notes We acknowledge financial support of FWO-Vlaanderen through projects G.0150.13N and G.0216.14N and ERA-NET RUS Plus/FWO, Grant G0D6515N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO FWOVlaanderen. Approved Most recent IF: 4.123
  Call Number c:irua:135091 Serial 4112
Permanent link to this record
 

 
Author Cabana, L.; Gonzalez-Campo, A.; Ke, X.; Van Tendeloo, G.; Nunez, R.; Tobias, G.
  Title Efficient Chemical Modification of Carbon Nanotubes with Metallacarboranes Type A1 Journal article
  Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
  Volume 21 Issue 21 Pages 16792-16795
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract As-produced single-walled carbon nanotubes (SWCNTs) tend to aggregate in bundles due to pi-pi interactions. Several approaches are nowadays available to debundle, at least partially, the nanotubes through surface modification by both covalent and noncovalent approaches. Herein, we explore different strategies to afford an efficient covalent functionalization of SWCNTs with cobaltabisdicarbollide anions. Aberration-corrected HRTEM analysis reveals the presence of metallacarboranes along the walls of the SWCNTs. This new family of materials presents an outstanding water dispersibility that facilitates its processability for potential applications.
  Address (up) Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de la UAB. 08193, Bellaterra (Spain). gerard.tobias@icmab.es
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000366501600011 Publication Date 2015-10-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.317 Times cited 5 Open Access
  Notes The research leading to these results received financial support from MINECO (MAT2014-53500-R; CTQ2013-44670-R), Generalitat de Catalunya (2014/SGR/149), and from the European Commission under the FP7 ITN Marie-Curie Network programme RADDEL (grant agreement 290023), the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure (ESMI) and the European Research Council, ERC Grant No 246791-COUNTATOMS. A.G.C. thanks the CSIC for the JAE-DOC grant. Approved Most recent IF: 5.317; 2015 IF: 5.731
  Call Number c:irua:129215 Serial 3964
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Galvita, V.V.; Poelman, H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Bell, A.T.; Marin, G.B.
  Title The role of hydrogen during Pt-Ga nanocatalyst formation Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 18 Issue 18 Pages 3234-3243
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Hydrogen plays an essential role during the in situ assembly of tailored catalytic materials, and serves as key ingredient in multifarious chemical reactions promoted by these catalysts. Despite intensive debate for several decades, the existence and nature of hydrogen-involved mechanisms – such as hydrogen-spillover, surface migration – have not been unambiguously proven and elucidated up to date. Here, Pt-Ga alloy formation is used as a probe reaction to study the behavior and atomic transport of H and Ga, starting from Pt nanoparticles on hydrotalcite-derived Mg(Ga)(Al)Ox supports. In situ XANES spectroscopy, time-resolved TAP kinetic experiments, HAADF-STEM imaging and EDX mapping are combined to probe Pt, Ga and H in a series of H2 reduction experiments up to 650 degrees C. Mg(Ga)(Al)Ox by itself dissociates hydrogen, but these dissociated hydrogen species do not induce significant reduction of Ga3+ cations in the support. Only in the presence of Pt, partial reduction of Ga3+ into Gadelta+ is observed, suggesting that different reaction mechanisms dominate for Pt- and Mg(Ga)(Al)Ox-dissociated hydrogen species. This partial reduction of Ga3+ is made possible by Pt-dissociated H species which spillover onto non-reducible Mg(Al)Ox or partially reducible Mg(Ga)(Al)Ox and undergo long-range transport over the support surface. Moderately mobile Gadelta+Ox migrates towards Pt clusters, where Gadelta+ is only fully reduced to Ga0 on condition of immediate stabilization inside Pt-Ga alloyed nanoparticles.
  Address (up) Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium. hilde.poelman@ugent.be
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000369506000106 Publication Date 2016-01-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 10 Open Access
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of beam time at the DUBBLE beam line of the ESRF and travel costs and a postdoctoral fellowship for S.T. The authors acknowledge the assistance from D. Banerjee (XAS campaign 26-01-979) at DUBBLE. E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to V. Bliznuk for acquisition of the TEM images. Approved Most recent IF: 4.123
  Call Number c:irua:132315 Serial 4000
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A.
  Title Ion Clouds in the Inductively Coupled Plasma Torch: A Closer Look through Computations Type A1 Journal article
  Year 2016 Publication Analytical chemistry Abbreviated Journal Anal Chem
  Volume 88 Issue 88 Pages 8005-8018
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We have computationally investigated the introduction of copper elemental particles in an inductively coupled plasma torch connected to a sampling cone, including for the first time the ionization of the sample. The sample is inserted as liquid particles, which are followed inside the entire torch, i.e., from the injector inlet up to the ionization and reaching the sampler. The spatial position of the ion clouds inside the torch as well as detailed information on the copper species fluxes at the position of the sampler orifice and the exhausts of the torch are provided. The effect of on- and off-axis injection is studied. We clearly show that the ion clouds of on-axis injected material are located closer to the sampler with less radial diffusion. This guarantees a higher transport efficiency through the sampler cone. Moreover, our model reveals the optimum ranges of applied power and flow rates, which ensure the proper position of ion clouds inside the torch, i.e., close enough to the sampler to increase the fraction that can enter the mass spectrometer and with minimum loss of material toward the exhausts as well as a sufficiently high plasma temperature for efficient ionization.
  Address (up) Research Group PLASMANT, Chemistry Department, University of Antwerp , Universiteitsplein 1, 2610 Antwerp, Belgium
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000381654800020 Publication Date 2016-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.32 Times cited 9 Open Access
  Notes The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO), Grant Number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 6.32
  Call Number PLASMANT @ plasmant @ c:irua:135644 Serial 4293
Permanent link to this record
 

 
Author Ying, J.; Hu, Z.-Y.; Yang, X.-Y.; Wei, H.; Xiao, Y.-X.; Janiak, C.; Mu, S.-C.; Tian, G.; Pan, M.; Van Tendeloo, G.; Su, B.-L.
  Title High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability Type A1 Journal article
  Year 2016 Publication Chemical communications Abbreviated Journal Chem Commun
  Volume 52 Issue 52 Pages 8219-8222
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A facile high-viscosity-solvent method is presented to synthesize PtPd bimetallic nanocrystals highly dispersed in different mesostructures (2D and 3D structures), porosities (large and small pore sizes), and compositions (silica and carbon). Further, highly catalytic activity, stability and durability of the nanometals have been proven in different catalytic reactions.
  Address (up) State Key Laboratory Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122, Luoshi Road, Wuhan, 430070, China. xyyang@whut.edu.cn
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000378715400006 Publication Date 2016-05-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.319 Times cited 19 Open Access
  Notes This work was supported by NFSC (51472190 and 51503166), ISTCP (2015DFE52870), PCSIRT (IRT15R52) of China, and the Integrated Infrastructure Initiative of EU (312483-ESTEEM2).; esteem2jra4 Approved Most recent IF: 6.319
  Call Number c:irua:134660 c:irua:134660 Serial 4110
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: