|   | 
Details
   web
Record
Author Lavor, I.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B.
Title Tunable coupling of terahertz Dirac plasmons and phonons in transition metal dichalcogenide-based van der Waals heterostructures Type A1 Journal article
Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater
Volume Issue Pages 015018
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Dirac plasmons in graphene hybridize with phonons of transition metal dichalcogenides (TMDs) when the materials are combined in so-called van der Waals heterostructures (vdWh), thus forming surface plasmon-phonon polaritons (SPPPs). The extend to which these modes are coupled depends on the TMD composition and structure, but also on the plasmons' properties. By performing realistic simulations that account for the contribution of each layer of the vdWh separately, we calculate how the strength of plasmon-phonon coupling depends on the number and composition of TMD layers, on the graphene Fermi energy and the specific phonon mode. From this, we present a semiclassical theory that is capable of capturing all relevant characteristics of the SPPPs. We find that it is possible to realize both strong and ultra-strong coupling regimes by tuning graphene's Fermi energy and changing TMD layer number.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000722020100001 Publication Date 2021-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.937 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 6.937
Call Number UA @ admin @ c:irua:183053 Serial 7036
Permanent link to this record