toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Martens, J.A.; Thybaut, J.W.; Denayer, J.F.M.; Sree, S.P.; Aerts, A.; Reyniers, M.-F.; van Speybroeck, V.; Waroquier, M.; Buekenhoudt, A.; Vankelecom, I.; Buijs, W.; Persoons, J.; Baron, G.V.; Bals, S.; Van Tendeloo, G.; Marin, G.B.; Jacobs, P.A.; Kirschhock, C.E.A. pdf  doi
openurl 
  Title Catalytic and molecular separation properties of Zeogrids and Zeotiles Type A1 Journal article
  Year 2011 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 168 Issue 1 Pages 17-27  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Zeogrids and Zeotiles are hierarchical materials built from assembled MFI zeolite precursor units. Permanent secondary porosity in these materials is obtained through self assembly of nanoparticles encountered in MFI zeolite synthesis in the presence of supramolecular templates. Hereon, the aggregated species are termed nanoslabs. Zeogrids are layered materials with lateral spacings between nanoslabs creating galleries qualifying as supermicropores. Zeotiles present a diversity of tridimensional nanoslab assemblies with mesopores. Zeotile-1, -4 and -6 are hexagonal mesostructures. Zeotile-1 has triangular and hexagonal channels; Zeotile-4 has hexagonal channels interconnected via slits. Zeotile-2 has a cubic structure with gyroid type mesoporosity. The behavior of Zeogrids and Zeotiles in adsorption, membrane and chromatographic separation and catalysis has been characterized and compared with zeolites and mesoporous materials derived from unstructured silica sources. Shape selectivity was detected via adsorption of n- and iso-alkanes. The mesoporosity of Zeotiles can be exploited in chromatographic separation of biomolecules. Zeotiles present attractive separation properties relevant to CO2 sequestration. Because of its facile synthesis procedure without hydrothermal steps Zeogrid is convenient for membrane synthesis. The performance of Zeogrid membrane in gas separation, nanofiltration and pervaporation is reported. In the Beckmann rearrangement of cyclohexanone oxime Zeogrids and Zeotiles display a catalytic activity characteristic of silicalite-1 zeolites. Introduction of acidity and redox catalytic activity can be achieved via incorporation of Al and Ti atoms in the nanoslabs during synthesis. Zeogrids are active in hydrocracking, catalytic cracking, alkylation and epoxidation reactions. Zeogrids and Zeotiles often behave differently from ordered mesoporous materials as well as from zeolites and present a valuable extension of the family of hierarchical silicate based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000291033300003 Publication Date 2011-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 13 Open Access  
  Notes Fwo; Iap Sbo Approved Most recent IF: 4.636; 2011 IF: 3.407  
  Call Number UA @ lucian @ c:irua:88647 Serial 290  
Permanent link to this record
 

 
Author Kirschhock, C.E.A.; Liang, D.; Van Tendeloo, G.; Fécant, A.; Hastoye, G.; Vanbutsele, G.; Bats, N.; Guillon, E.; Martens, J.A. pdf  doi
openurl 
  Title Ordered end-member of ZSM-48 zeolite family Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 2 Pages 371-380  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) ZSM-48 and related zeolites are considered to be highly disordered structures. Different polytypes can be clearly distinguished by simulation of high-resolution electron microscopy images. Synthesis of phase-pure polytypes was attempted. One of the investigated samples crystallized via seeding designated as COK-8 consisted of nanoscopic, needlelike crystals with a very large length/width ratio, growing along the pore direction. These specimens are phase-pure polytype 6 (PT6, numbering according to Lobo and van Koningsveld). Aggregates of these nanoneedles occasionally contained a second polytype: PT1. The latter polytype occurred more abundantly in larger crystal rods in an IZM-1 sample crystallized in ethylene glycol. Here too, the isolated crystallites mainly consist of large, defect-free regions of PT6. A simulation of polytype lattice energies offers a rational explanation for the observed polytypical intergrowth formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000262605200026 Publication Date 2008-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 30 Open Access  
  Notes Fwo; Goa Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:76032 Serial 2503  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: