|   | 
Details
   web
Records
Author Sui, Y.; Vlaeminck, S.E.
Title Effects of salinity, pH and growth phase on the protein productivity by Dunaliella salina Type A1 Journal article
Year 2019 Publication Journal of chemical technology and biotechnology Abbreviated Journal
Volume 94 Issue 4 Pages 1032-1040
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) BACKGROUND Microalgae have long been adopted for use as human food, animal feed and high‐value products. For carotenogenesis, Dunaliella salina is one of the most studied microalgae, yet its protein synthesis has been limitedly reported. In this study, D. salina was cultivated at different NaCl and pH levels to optimize its protein productivity. RESULTS The biomass protein content followed an increasedecrease pattern throughout the growth phases, with a maximum in the exponential phase (6080% over ash‐free dry weight). Adversely, the biomass pigment contents were at relatively stable levels (around 0.5% carotenoids, 1.3% chlorophyll a and 0.5% chlorophyll b over ash‐free dry weight). Among the tested conditions (13 mol L−1 salinity, pH 7.59.5), the highest protein productivity (43.5 mg L−1 day−1) was achieved at 2 mol L−1 salinity and pH 7.5 during the exponential phase, which surpassed others by 1697%. Additionally, table salts were tested to be equivalent and cost‐efficient salt sources for the growth medium. CONCLUSION This study highlighted the suitability of D. salina as a protein source, providing guidelines for 70% cheaper medium formulation in the lab and for maximum protein productivity at larger scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461237300004 Publication Date 2018-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:157955 Serial 7849
Permanent link to this record
 

 
Author Ding, L.; Jidkova, S.; Greuter, M.J.W.; Van Herck, K.; Goossens, M.; Martens, P.; de Bock, G.H.; Van Hal, G.
Title Coverage determinants of breast cancer screening in Flanders : an evaluation of the past decade Type A1 Journal article
Year 2020 Publication International journal for equity in health Abbreviated Journal
Volume 19 Issue 1 Pages 212
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Social Epidemiology & Health Policy (SEHPO)
Abstract (down) Background Breast cancer (BC) is the most common cancer in women in the developed world. In order to find developing cancers in an early stage, BC screening is commonly used. In Flanders, screening is performed in and outside an organized breast cancer screening program (BCSP). However, the determinants of BC screening coverage for both screening strategies are yet unknown. Objective To assess the determinants of BC screening coverage in Flanders. Methods Reimbursement data were used to attribute a screening status to each woman in the target population for the years 2008-2016. Yearly coverage data were categorized as screening inside or outside BCSP or no screening. Data were clustered by municipality level. A generalized linear equation model was used to assess the determinants of screening type. Results Over all years and municipalities, the median screening coverage rate inside and outside BCSP was 48.40% (IQR: 41.50-54.40%) and 14.10% (IQR: 9.80-19.80%) respectively. A higher coverage rate outside BSCP was statistically significantly (P < 0.001) associated with more crowded households (OR: 3.797, 95% CI: 3.199-4.508), younger age, higher population densities (OR: 2.528, 95% CI: 2.455-2.606), a lower proportion of unemployed job seekers (OR: 0.641, 95% CI: 0.624-0.658) and lower use of dental care (OR: 0.969, 95% CI: 0.967-0.972). Conclusion Coverage rate of BC screening is not optimal in Flanders. Women with low SES that are characterized by younger age, living in a high population density area, living in crowded households, or having low dental care are less likely to be screened for BC in Flanders. If screened, they are more likely to be screened outside the BCSP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000595753100002 Publication Date 2020-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174374 Serial 6721
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Kobayashi, K.; Janda, J.; Van Nevel, S.; Vlaeminck, S.E.
Title Sulfur-based denitrification treating regeneration water from ion exchange at high performance and low cost Type A1 Journal article
Year 2018 Publication Bioresource technology Abbreviated Journal
Volume 257 Issue Pages 266-273
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Autotrophic denitrification with sulfur is an underexplored alternative to heterotrophic denitrification to remove nitrate from wastewater poor in organics. The application on ion exchange regeneration water (19.432.1 mS cm−1) is novel. Three fixed bed reactors were tested at 15 °C for >4 months, inoculated with activated sludge from sewage treatment. All were fast in start-up (<10 days) with high performance (94 ± 2% removal efficiency). pH control with NaOH rendered higher nitrate removal rates than limestone addition to the bed (211 ± 13 vs. 102 ± 13 mg N L−1 d−1), related to higher pH (6.64 vs. 6.24) and sulfur surface area. Bacterial communities were strongly enriched in Sulfurimonas (6367%) and Thiobacillus (2426%). In an economic comparison, sulfur-based denitrification (5.3 kg−1 N) was 15% cheaper than methanol-based denitrification (6.22 kg−1 N) and both treatments were opex dominated (85.9 vs. 86.5%). Overall, the technological and economic feasibility should boost further implementation of sulfurotrophic denitrification.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430401100033 Publication Date 2018-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:149975 Serial 8619
Permanent link to this record
 

 
Author Bernard, P.C.; Van Grieken, R.E.; Brügmann, L.
Title Geochemistry of suspended matter from the baltic sea : 1 : results of individual particle characterization by automated electron microprobe Type A1 Journal article
Year 1989 Publication Marine chemistry Abbreviated Journal
Volume 26 Issue 2 Pages 155-177
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Automated electron probe X-ray microanalysis was used to characterize some 15 000 individual suspension particles from 50 samples of suspended matter collected from different depths at 18 stations throughout the Baltic Sea and the transient area to the North Sea. For each particle, 14 minor and major elements were determined and size information data were obtained. To process this huge amount of results, multivariate analysis techniques were invoked: the particles were classified into specific types and the abundance variations of these groups were studied. It appeared that 80% of all investigated particles contained mostly silicon, and seemed to consist of quartz, and K-rich and Fe-rich aluminosilicates. The abundance of BaSO4 particles averaged 5% throughout the Baltic Sea, but amounted to up to 44% at some stations. The abundance of the Fe-rich particles varied significantly with location and depth, and averaged ∼ 4%. They were often found to be associated with significant amounts of P. Both of these particle types and the Mn-rich particles are thought to be mainly authigenic. Calcium carbonate particles are more abundant towards the North Sea (which seems to act as a source). Principal component analysis of the data revealed that most of the compositional variability can be explained by differences between deep and surface waters and by the influences of inflowing North Sea waters. Additional information about the types and sources of the suspended matter in the Baltic Sea was gained from the comparison and correlation of the single particle results with different fractions of the bulk concentrations of elements such as Al, Ca, Mn, Fe, Zn and Ba.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1989T986200005 Publication Date 2003-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4203; 1872-7581 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116699 Serial 7995
Permanent link to this record
 

 
Author Psilodimitrakopoulos, S.; Orekhov, A.; Mouchliadis, L.; Jannis, D.; Maragkakis, G.M.; Kourmoulakis, G.; Gauquelin, N.; Kioseoglou, G.; Verbeeck, J.; Stratakis, E.
Title Optical versus electron diffraction imaging of Twist-angle in 2D transition metal dichalcogenide bilayers Type A1 Journal article
Year 2021 Publication npj 2D Materials and Applications Abbreviated Journal
Volume 5 Issue 1 Pages 77
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Atomically thin two-dimensional (2D) materials can be vertically stacked with van der Waals bonds, which enable interlayer coupling. In the particular case of transition metal dichalcogenide (TMD) bilayers, the relative direction between the two monolayers, coined as twist-angle, modifies the crystal symmetry and creates a superlattice with exciting properties. Here, we demonstrate an all-optical method for pixel-by-pixel mapping of the twist-angle with a resolution of 0.55(degrees), via polarization-resolved second harmonic generation (P-SHG) microscopy and we compare it with four-dimensional scanning transmission electron microscopy (4D STEM). It is found that the twist-angle imaging of WS2 bilayers, using the P-SHG technique is in excellent agreement with that obtained using electron diffraction. The main advantages of the optical approach are that the characterization is performed on the same substrate that the device is created on and that it is three orders of magnitude faster than the 4D STEM. We envisage that the optical P-SHG imaging could become the gold standard for the quality examination of TMD superlattice-based devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000694849200001 Publication Date 2021-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access OpenAccess
Notes This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call European R & T Cooperation-Grant Act of Hellenic Institutions that have successfully participated in Joint Calls for Proposals of European Networks ERA NETS (National project code: GRAPH-EYE T8 Epsilon Rho Alpha 2-00009 and European code: 26632, FLAGERA). L.M., G.Ko. and G.Ki. acknowledge funding by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project No: HFRI-FM17-3034). GKi, S.P. and G.M.M. acknowledge funding from a research co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014-2020” in the context of the project “Crystal quality control of two-dimensional materials and their heterostructures via imaging of their non-linear optical properties” (MIS 5050340)“. J.V acknowledges funding from FWO G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund, EU. J.V. and N.G. acknowledge funding from the European Union under the Horizon 2020 programme within a contract for Integrating Activities for Advanced Communities No 823717-ESTEEM3. J.V. N.G. and A.O. acknowledge funding through a GOA project ”Solarpaint" of the University of Antwerp. Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:181610 Serial 6877
Permanent link to this record
 

 
Author Filez, M.; Feng, J.-Y.; Minjauw, M.M.; Solano, E.; Poonkottil, N.; Van Daele, M.; Ramachandran, R.K.; Li, C.; Bals, S.; Poelman, H.; Detavernier, C.; Dendooven, J.; Filez, M.; Minjauw, M.; Solano, E.; Poonkottil, N.; Li, C.; Bals, S.; Dendooven, J.
Title Shuffling atomic layer deposition gas sequences to modulate bimetallic thin films and nanoparticle properties Type A1 Journal article
Year 2022 Publication Chemistry of materials Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Atomic layer deposition (ALD) typically employs metal precursors and co-reactant pulses to deposit thin films in a layer-by-layer fashion. While conventional ABAB-type ALD sequences implement only two functionalities, namely, a metal source and ligand exchange agent, additional functionalities have emerged, including etching and reduction agents. Herein, we construct gas-phase sequences-coined as ALD+-with complex-ities reaching beyond the classic ABAB-type ALD by freely combining multiple functionalities within irregular pulse schemes, e.g., ABCADC. The possibilities of such combinations are explored as a smart strategy to tailor bimetallic thin films and nanoparticle (NP) properties. By doing so, we demonstrate that bimetallic thin films can be tailored with target thickness and through the full compositional range, while the morphology can be flexibly modulated from thin films to NPs by shuI 1ing the pulse sequence. These complex pulse schemes are expected to be broadly applicable but are here explored for Pd-Ru bimetallic thin films and NPs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000823205700001 Publication Date 2022-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited 2 Open Access OpenAccess
Notes This research was funded by the Research Foundation, Flanders (FWO) , and the Special Research Fund BOF of Ghent University (GOA 01G01019) . M.F. and M.M.M. acknowledge the FWO for a postdoctoral research fellowship (1280621N) . N.P. acknowledges the European Union's Horizon 2020 research and innovation program under the Marie Skiodowska-Curie grant agreement no. 765378. For the GISAXS measurements, the author s received funding from the European Community's Transnational Access Program CALIPSOplus. E.S. acknowledges the Spanish project RTI2018-093996-B-C32 MICINN/FEDER funds. Air Liquide is acknowledged for supporting this research. The authors acknowledge SOLEIL for the provision of synchrotron radiation facilities and would like to thank Dr. Alessandro Coati for assistance in using beamline SiXS. The GIWAXS experiments were performed at NCD-SWEET beamline at ALBA Synchrotron with the collaboration of ALBA staff . Approved no
Call Number UA @ admin @ c:irua:189541 Serial 8928
Permanent link to this record
 

 
Author O'Modhrain, C.; Trenchev, G.; Gorbanev, Y.; Bogaerts, A.
Title Upscaling plasma-based CO₂ conversion : case study of a multi-reactor gliding arc plasmatron Type A1 Journal article
Year 2024 Publication ACS Engineering Au Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Atmospheric pressure plasmas have shifted in recent years from being a burgeoning research field in the academic setting to an actively investigated technology in the chemical, oil, and environmental industries. This is largely driven by the climate change mitigation efforts, as well as the evident pathways of value creation by converting greenhouse gases (such as CO2) into useful chemical feedstock. Currently, most high technology readiness level (TRL) plasma-based technologies are based on volumetric and power-based scaling of thermal plasma systems, which results in large capital investment and regular maintenance costs. This work investigates bringing a quasi-thermal (so-called “warm”) plasma setup, namely, a gliding arc plasmatron, from a lab-scale to a pilot-scale capacity with an increase in throughput capacity by a factor of 10. The method of scaling is the parallelization of plasmatron reactors within a single housing, with the aim of maintaining a warm plasma regime while simultaneously improving build cost and efficiency (compared to separate reactors operating in parallel). Special attention is also given to the safety and control features implemented in the setup, a key component required for integration into industrial systems. The performance of the multi-reactor gliding arc plasmatron (MRGAP) reactor is investigated, focusing on the influence of flow rate and the number of active reactors. The location of active reactors was deemed to have a negligible effect on the monitored metrics of conversion, energy efficiency, and energy cost. The optimum operating conditions were found to be with the most active reactors (five) at the highest investigated flow rate (80 L/min). Analysis of results suggests that an optimum conversion (9%) and plug power-based energy efficiency (19%) can be maintained at a specific energy input (SEI) around 5.3 kJ/L (or 1 eV/molecule). The concept of parallelization of plasmatron reactors within a singular housing was demonstrated to be a viable method for scaling up from a lab-scale to a prototype-scale device, with performance analysis suggesting that increasing the power (through adding more reactor channels) and total flow rate, while maintaining an SEI around 5.3 or 4.2 kJ/L, i.e., 1.3 or 1 eV/molecule (based on plug power and plasma-deposited power, respectively), can result in increased conversion rate without sacrificing absolute conversion or energy efficiency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001166625200001 Publication Date 2024-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:204749 Serial 9182
Permanent link to this record
 

 
Author Alejo, D.; Morales, M.C.; de la Torre, J.B.; Grau, R.; Bencs, L.; Van Grieken, R.; van Espen, P.; Sosa, D.; Nuñez, V.
Title Seasonal trends of atmospheric nitrogen dioxide and sulfur dioxide over North Santa Clara, Cuba Type A1 Journal article
Year 2013 Publication Environmental monitoring and assessment Abbreviated Journal
Volume 185 Issue 7 Pages 6023-6033
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Atmospheric nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels were monitored simultaneously by means of Radiello passive samplers at six sites of Santa Clara city, Cuba, in the cold and the warm seasons in 2010. The dissolved ionic forms of NO2 and SO2 as nitrate and sulfite plus sulfate, respectively, were determined by means of ion chromatography. Analysis of NO2 as nitrite was also performed by UVVis spectrophotometry. For NO2, significant t tests show good agreement between the results of IC and UVVis methods. The NO2 and SO2 concentrations peaked in the cold season, while their minimum levels were experienced in the warm season. The pollutant levels do not exceed the maximum allowable limit of the Cuban Standard 39:1999, i.e., 40 μg/m3 and 50 μg/m3 for NO2 and SO2, respectively. The lowest pollutant concentrations obtained in the warm season can be attributed to an increase in their removal via precipitation (scavenging) while to the decreased traffic density and industrial emission during the summer holidays (e.g., July and August).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319753600053 Publication Date 2012-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1420-2026; 1573-2967 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:107293 Serial 8501
Permanent link to this record
 

 
Author Worobiec, A.; Potgieter-Vermaak, S.S.; Berghmans, P.; Winkler, H.; Burger, R.; Van Grieken, R.
Title Air particulate emissions in developing countries : a case study in South Africa Type A1 Journal article
Year 2011 Publication Analytical letters Abbreviated Journal
Volume 44 Issue 11 Pages 1907-1924
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract (down) Atmospheric aerosols were collected during the winter in Bethlehem, South Africa. The particulate mass concentrations, ambient carbon mass concentrations, and chemical composition of various particulate fractions showed that the area is highly polluted. The fine particle mass concentrations peaked at 1000 µg/m3 for PM2.5. Ambient carbon mass concentrations ranged from 20 to 40 µg/m3. Single particle analysis confirmed that the fine particle fraction was dominated by organic particles. The topographical conditions, causing a low inversion, together with the high amounts of emissions from biomass burning, result in unacceptable levels of air pollution and pose a considerable health threat to the population.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000294602300006 Publication Date 2011-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2719 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:91079 Serial 7429
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Vandenberghe, W.G.
Title Thermodynamic equilibrium theory revealing increased hysteresis in ferroelectric field-effect transistors with free charge accumulation Type A1 Journal article
Year 2021 Publication Communications Physics Abbreviated Journal
Volume 4 Issue 1 Pages 86
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) At the core of the theoretical framework of the ferroelectric field-effect transistor (FeFET) is the thermodynamic principle that one can determine the equilibrium behavior of ferroelectric (FERRO) systems using the appropriate thermodynamic potential. In literature, it is often implicitly assumed, without formal justification, that the Gibbs free energy is the appropriate potential and that the impact of free charge accumulation can be neglected. In this Article, we first formally demonstrate that the Grand Potential is the appropriate thermodynamic potential to analyze the equilibrium behavior of perfectly coherent and uniform FERRO-systems. We demonstrate that the Grand Potential only reduces to the Gibbs free energy for perfectly non-conductive FERRO-systems. Consequently, the Grand Potential is always required for free charge-conducting FERRO-systems. We demonstrate that free charge accumulation at the FERRO interface increases the hysteretic device characteristics. Lastly, a theoretical best-case upper limit for the interface defect density D-FI is identified. The ferroelectric field-effect transistor, which has attracted much attention for application as both a highly energy-efficient logic device and a non-volatile memory device, has often been studied within the framework of equilibrium thermodynamics. Here, the authors theoretically demonstrate the importance of utilizing the correct thermodynamic potential and investigate the impact of free charge accumulation on the equilibrium performance of ferroelectric-based systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000645913400001 Publication Date 2021-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2399-3650 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:179005 Serial 7031
Permanent link to this record
 

 
Author Vanmeert, F.
Title Highly specific X-ray powder diffraction imaging at the macroscopic and microscopic scale Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) At or below the surface of painted works of art, valuable information is present that provides insights into an object’s past, such as the artist’s technique and the creative process that was followed or its conservation history, but also on its current state of preservation. Typically, a (very) limited set of small paint samples is taken which provide direct access to the individual paint layers. The chemical build-up of these layers can then be investigated in great detail using various microscopic analytical methods. However, in recent years a new trend towards both elemental and chemical imaging techniques has been set which are capable of visualizing the (often) heterogeneous composition of painted objects on a macroscopic scale. In this dissertation, various forms of specificity attainable with X‑ray powder diffraction (XRPD) imaging are explored: at the chemical, material and spatial level. This high specificity is illustrated throughout several applications stemming from the field of cultural heritage, both at the macroscopic (MA) and microscopic (µ) scale. As a first step, XRPD imaging was transformed to a transportable instrument that can be employed for the in situ investigation of artworks, e.g., inside museums and conservation workshops. With this unique instrument large‑scale maps (cm2 – dm2) reflecting the distribution of crystalline phases on/below the surface of flat painted artefacts can be visualized in a noninvasive manner. In this way compound-specific information was attained which can be related to original pigments or materials that have been added in a later stage and even degradation/secondary products that have formed spontaneously inside the paint layers. Additionally, with MA‑XRPD imaging it was possible to link quantitative information of pigment compositions and preferred orientation effects to the 2D compound‑specific distribution images, allowing for a further distinction between very similar artists’ materials. Furthermore, promising results for the limited depth-selectivity of this technique, obtained by exploiting the small shift in the position of the diffraction signals originating from the layered sequence of the pigments, are shown. Finally, a minute paint sample from Wheat stack under a cloudy sky by Van Gogh was investigated at a synchrotron radiation facility with tomographic µ‑XRPD imaging at the microscopic scale. The high chemical and spatial specificity of this imaging method was exploited to further elucidate the degradation pathway of the red lead pigment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:159805 Serial 8043
Permanent link to this record
 

 
Author Jain, R.; Yadav, R.K.; Rather, J.A.
Title Voltammetric assay of anti-vertigo drug betahistine hydrochloride in sodium lauryl sulphate Type A1 Journal article
Year 2010 Publication Colloids and surfaces: A: physicochemical and engineering aspects Abbreviated Journal
Volume 366 Issue Pages 63-67
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Assay and electrochemical behaviour of betahistine hydrochloride in BrittonRobinsons (BR) buffer of pH range 2.512.0 at a glassy carbon electrode have been investigated. Addition of anionic surfactant (sodium lauryl sulphate) to the betahistine hydrochloride solution containing electrolyte enhanced the reduction current signal while neutral surfactant (Tween-20) and cationic surfactant cetyl trimethylammonium bromide (CTAB) showed an opposite effect. Voltammograms of betahistine hydrochloride exhibited a single wave. Based on reduction behaviour of betahistine hydrochloride, a direct square-wave voltammetric method has been developed for the assay of betahistine hydrochloride in pharmaceutical formulation. The proposed method has been validated as per ICH guideline. System and method precision in terms of RSD were 1.88% and 1.60% respectively, whereas the method accuracy was indicated by the recovery of 97.6101.9%. Reduction peak current was linear over the target concentration with correlation coefficient 0.998. The proposed method was successfully applied to the determination of betahistine hydrochloride in pharmaceutical formulation. The results were compared with those obtained by the reference high performance liquid chromatographic method. No significant differences were found between results of proposed and reference methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000280501800010 Publication Date 2010-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-7757 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:98689 Serial 8741
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J.T.-W.; Verbeeck, J.; Boyen, H.-G.; Snaith, H.
Title Getting rid of anti-solvents: gas quenching for high performance perovskite solar cells Type P1 Proceeding
Year 2018 Publication 2018 Ieee 7th World Conference On Photovoltaic Energy Conversion (wcpec)(a Joint Conference Of 45th Ieee Pvsc, 28th Pvsec & 34th Eu Pvsec) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) As the field of perovskite optoelectronics developed, a plethora of strategies has arisen to control their electronic and morphological characteristics for the purpose of producing high efficiency devices. Unfortunately, despite this wealth of deposition approaches, the community experiences a great deal of irreproducibility between different laboratories, batches and preparation methods. Aiming to address this issue, we developed a simple deposition method based on gas quenching that yields smooth films for a wide range of perovskite compositions, in single, double, triple and quadruple cation varieties, and produces planar heterojunction devices with competitive efficiencies, so far up to 20%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469200401163 Publication Date 2018-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-5386-8529-7 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160468 Serial 5365
Permanent link to this record
 

 
Author Kips, R.; Pidduck, A.J.; Houlton, M.R.; Leenaers, A.; Mace, J.D.; Marie, O.; Pointurier, F.; Stefaniak, E.A.; Taylor, P.D.P.; van den Berghe, S.; van Espen, P.; Van Grieken, R.; Wellum, R.
Title Determination of fluorine in uranium oxyfluoride particles as an indicator of particle age Type A1 Journal article
Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal
Volume 64 Issue 3 Pages 199-207
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)
Abstract (down) As swipe samples from enrichment activities typically contain uranium particles with a detectable amount of fluorine, the question was raised whether the analysis of fluorine in particles could complement the information on the uranium isotope ratios. For this, uranium oxyfluoride particles were prepared from the controlled hydrolysis of uranium hexafluoride (UF6). The relative amount of fluorine was characterized by scanning electron microscopy combined with energy-dispersive X-ray spectrometry (SEM-EDX), as well as ion-microprobe secondary ion mass spectrometry (IM-SIMS). Of particular interest was the assessment of the reduction of the amount of fluorine over time, and after exposure to UV-light and high temperatures. Micro-Raman spectrometry (MRS) was applied to look for differences in molecular structure between these various sample types. Both SEM-EDX and IM-SIMS showed a general reduction of the fluorine-to-uranium ratio after 12 years of storage. The exposure to UV-light and high temperatures was found to have accelerated the loss of fluorine. A distinct peak at 865 cm− 1 Raman shift was detected for the majority of particles analyzed by MRS. For the particles that were heat-treated, the Raman spectra were similar to the spectrum of U3O8. Although often large variations were observed between particles from the same sample, the three particle measurement techniques (IM-SIMS, SEM-EDX and MRS) showed some consistent trends. They therefore appear promising in terms of the ability to place bounds on particle age, as well as shedding light on the complex processes involved in UO2F2 particle ageing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000265755600002 Publication Date 2008-12-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; 1873-3565 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:77057 Serial 7780
Permanent link to this record
 

 
Author Dingenen, F.
Title Solar-driven H2 production from seawater using stabilized plasmon-enhanced photocatalysts Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages XXXVIII, 210 p.
Keywords Doctoral thesis; Engineering sciences. Technology
Abstract (down) As natural gas prices proved to be very volatile, sustainable alternatives are highly needed. Water-derived H2 was revealed as a promising substitute, allowing to produce a green energy carrier with a minimum of harmful emissions. Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues due to the presence of salts.Photocatalytic seawater splitting is particularly promising for this purpose, as it seems less affected by adversary seawater effects and might rely on free and renewable solar power. Unfortunately, the benchmark photocatalyst, TiO2, still suffers from its low solar light activity. It is only actived upon illumination with energetic ultraviolet light (<5% of the sunlight). In order to broaden the activity window to the visible light, the concept of the 'plasmonic rainbow' was explored. Here, TiO2 is modified with various gold-silver composites that possess the unique optical phenomenon of Surface Plasmon Resonance (SPR). This phenomenon enables the absorption of light at very specific wavelengths, depending on the metal type, size, shape and dielectric environment. The light energy might then be converted into hot carriers, strong local electromagnetic fields and/or heat. By combining multiple composites with various sizes and compositions, a broadband absorption could be obtained, resulting in significantly enhanced activity in photocatalytic model reactions under simulated sunlight. The major disadvantage of these plasmonic nanoparticles is their tendency to oxidize and deactivate. To overcome this, polymer shell stabilization strategies were found to be effective to protect the metal cores. Both conductive and non-conductive polymers were studied. For the former, a mix-and-wait strategy generating polyaniline shells of 2-5 nm was used, whille the latter was based on a Layer-by-Layer approach, allowing (sub) nanometer thickness control. For the actual H2 production experiments, the plasmonic loading was optimized in a pure water:methanol scavenger (7:1) mixture and initially the stabilization strategies proofed to be effective for simulated seawater (0.5M NaCl), even after 2 years. However, in real seawater, the activity decreased drastically due to aggregation of the photocatalyst in the presence of multivalent cations. Finally, facile immobilization strategies using 3D printing showed to be able to yield stable, solar active photocatalyst for real seawater splitting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203196 Serial 9094
Permanent link to this record
 

 
Author Esguerra, J.L.; Krook, J.; Svensson, N.; Van Passel, S.
Title Assessing the economic potential of landfill mining : review and recommendations Type A1 Journal article
Year 2019 Publication Detritus Abbreviated Journal
Volume Volume 08 - December 2019 Issue Volume 08 - December 2019 Pages 1
Keywords A1 Journal article; Engineering Management (ENM)
Abstract (down) As landfill mining (LFM) gains public attention, systematic assessment of its economic potential is deemed necessary. The aim of this review is to critically analyze the usefulness and validity of previous economic assessments of LFM. Following the life cycle costing (LCC) framework, (i) the employed methods based on goal and scope, technical parameters and data inventory, and modelling choices were contrasted with respect to (ii) the synthesized main findings based on net profitability and economic performance drivers. Results showed that the selected studies (n=15) are mostly case study-specific and concluded that LFM has a weak economic potential, hinting at the importance of favorable market and regulation settings. However, several method issues are apparent as costs and revenues are accounted at different levels of aggregation, scope and scale-from process to sub-process level, from private to societal economics, and from laboratory to pilot-scale, respectively. Moreover, despite the inherent large uncertainties, more than half of the studies did not perform any uncertainty or sensitivity analyses posing validity issues. Consequently, this also limits the usefulness of results as individual case studies and as a collective, towards a generic understanding of LFM economics. Irrespective of case study-specific or generic aims, this review recommends that future assessments should be learning-oriented. That is, uncovering granular information about what builds up the net profitability of LFM, to be able to systematically determine promising paths for the development of cost-efficient projects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000504065300011 Publication Date 2019-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This study has received funding from the European Training Network for Resource Recovery Through Enhanced Landfill Mining (NEW-MINE, Grant Agreement No 721185) under the European Union's EU Framework Programme for Research and Innovation Horizon 2020. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165758 Serial 6153
Permanent link to this record
 

 
Author Saviuc, I.
Title Assessment of electric residential microgrids in the EU context : role of energy storage, interactions with the main grid, and policy scenarios Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 158 p.
Keywords Doctoral thesis; Engineering Management (ENM)
Abstract (down) As decentralized electricity generation plays an important role in the reform of the energy system in the EU, electric residential microgrids merit an assessment of their position and potential. The work on this dissertation focuses on the synergy between the development of microgrids that are powered by PV panels, and the adoption of energy storage, with the aim to identify shortcomings and propose solutions. Techno-economic assessment indicates that, for a microgrid that aims to maximize its self-consumption, the electricity pricing mechanisms that are current practice across the EU are detrimental to the economic viability of using energy storage. Case studies and simulations in Belgium, Greece, Denmark, Italy, Finland, Spain and Germany show conclusively how existing tariff structures (Net-Metering, Time-of-Use, Feed-in Tariff, with or without the option of a Capacity tariff) are suitable for stimulating renewable generation, but not storage. Another underlying reason that affects the economic viability of a residential microgrid in the current context relates to the technology losses, which cannot be compensated by electricity pricing mechanisms. Having established the need for a different approach in order to improve the economic viability of microgrids with storage, this work investigated whether a form of direct support to the microgrid operator can be envisioned. A cost-benefit analysis revealed that the benefits coming from decentralized energy generation toward the main electricity grid can be compared with the cost of including and operating energy storage, and therefore a direct support from the network operator and the public can be justified in order to attain the economic viability of a microgrid with storage. This way, the electricity network can benefit from an increased number of flexible, enriched microgrids within the system, the microgrid operators are incentivized to include energy storage, and the society contributes towards a sturdier energy supply with more engaged prosumers and less polluting emissions. Entrepreneurial diversity: a career motives’ perspective – Ilse D
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177112 Serial 6915
Permanent link to this record
 

 
Author Saviuc, I.; Milis, K.; Peremans, H.; Van Passel, S.
Title A cross-European analysis of the impact of electricity pricing on battery uptake in residential microgrids with photovoltaic units Type A1 Journal article
Year 2021 Publication Journal of Sustainable Development of Energy, Water and Environment Systems Abbreviated Journal
Volume 9 Issue 3 Pages 1080368
Keywords A1 Journal article; Engineering Management (ENM)
Abstract (down) As decentralized electricity generation is supporting grid development into the prosumer era, this paper investigates the economic viability of adding batteries to residential microgrids powered by photovoltaic units, under various electricity pricing schemes. Batteries bring the benefits of grid-stabilization and congestion relief, and they are also becoming cheaper. The problem identified is that the main grid effectively acts as a lossless storage system, especially under the net-metering scheme, whereas using a battery involves investment costs and energy losses. This mismatch is addressed by analysing residential microgrid projects under seven tariff designs, each in seven countries of the European Union, and compare the economic viability of photovoltaic systems with and without batteries. The findings show that the conditions most favourable to batteries are given by a capacity tariff scheme allowing price arbitrage. Based on these findings, the paper discusses possibilities for further support in order to bring the economic viability of microgrids with batteries on par with that of microgrids without batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000669453200005 Publication Date 2020-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1848-9257 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:179767 Serial 6910
Permanent link to this record
 

 
Author Sun, M.-H.; Zhou, J.; Hu, Z.-Y.; Chen, L.-H.; Li, L.-Y.; Wang, Y.-D.; Xie, Z.-K.; Turner, S.; Van Tendeloo, G.; Hasan, T.; Su, B.-L.
Title Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency Type A1 Journal article
Year 2020 Publication Matter Abbreviated Journal
Volume 3 Issue 4 Pages 1226-1245
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) As a size- and shape-selective catalyst, zeolites are widely used in petroleum and fine-chemicals processing. However, their small micropores severely hinder molecular diffusion and are sensitive to coke formation. Hierarchically porous zeolite single crystals with fully interconnected, ordered, and tunable multimodal porosity at macro-, meso-, and microlength scale, like in leaves, offer the ideal solution. However, their synthesis remains highly challenging. Here, we report a versatile confined zeolite crystallization process to achieve these superior properties. Such zeolite single crystals lead to significantly improved mass transport properties by shortening the diffusion length while maintaining shape-selective properties, endowing them with a high efficiency of zeolite crystals, enhanced catalytic activities and lifetime, highly reduced coke formation, and reduced deactivation rate in bulky-molecule reactions and methanol-to-olefins process. Their industrial utilization can lead to the design of innovative and intensified reactors and processes with highly enhanced efficiency and minimum energy consumption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000581132600021 Publication Date 2020-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174329 Serial 6727
Permanent link to this record
 

 
Author Artaxo, P.; Maenhaut, W.; Storms, H.; Van Grieken, R.
Title Aerosol characteristics and sources for the Amazon Basin during the wet season Type A1 Journal article
Year 1990 Publication Journal of geophysical research Abbreviated Journal
Volume 95 Issue 10 Pages 16971-16985
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) As a part of the NASA Global Tropospheric Experiment (GTE), aerosols were sampled in the tropical rain forest of the Amazon Basin during the Amazon Boundary Layer Experiment (ABLE 2B) in April and May 1987, in the wet season, when no forest burning occurs. Fine (dp < 2.0 μm) and coarse (2.0 < dp < 15 μm) aerosol fractions were collected using stacked filter units, at three sites under the forest canopy and at three levels of a tower inside the jungle. Particle-induced X ray emission (PIXE) was used to measure concentrations of 22 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb). Morphological and trace element measurements of individual particles were carried out by automated electron probe X ray microanalysis. Gravimetric analysis was performed to obtain the fine and coarse aerosol mass concentration. Absolute factor analysis was used to interpret the large data set of the trace element concentrations and to obtain elemental source profiles. Hierarchical cluster analysis was used to derive groups of individual particles. The concentrations of soil dust related elements (Al, Si, Ti, Fe, Mn) were 5 times larger in the wet season compared to the 1985 ABLE 2A dry season experiment. Biogenic aerosol related elements in the fine fraction showed lower concentrations in the wet season. Fine aerosol mass concentration averaged only 2.1±0.7 μg m−3, while the average coarse mass concentration was 6.1±1.8 μg m −3. Sulphur concentrations averaged 76±14 ng m −3 in the fine fraction and 37±9 ng m −3 in the coarse fraction. Biogenic aerosol-related elements were dominant under the forest canopy, while soil dust dominated at the top of the forest canopy. Only two factors explained about 90% of the data variability for the fine and coarse aerosol fractions. These were soil dust (represented mainly by Al, Si, Ti, Mn, and Fe) and biogenic aerosol (represented by K, P, Cl, S, Zn, and the aerosol mass concentration). Source profiles showed a homogeneous aerosol distribution with similar elemental compositions at the different sampling sites. Enrichment factor calculations revealed a soil dust elemental profile similar to the average bulk soil composition, and a biogenic component similar to the plant bulk elemental composition. Total aerosol mass source apportionment showed that biogenic particles account for 5595% of the airborne concentrations. The analysis of individual aerosol particles showed that the biogenic particles consist of leaf fragments, pollen grains, fungi, algae, and other types of particles. Several groups of particles with K, Cl, P, S, and Ca as minor elements could easily be identified as biogenic particles on the basis of their morphology. Considering the vast area of tropical rain forests and the concentrations measured in this work, it is possible that biogenic particles can play an important role in the global aerosol budget and in the global biogeochemical cycles of various elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1990EB20200051 Publication Date 2008-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227; 2156-2202; 0022-1406; 0196-6928; 0196-6936; 0885-3401; 8755-8556; 0196-2256; 0747-7309; 1 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116931 Serial 7422
Permanent link to this record
 

 
Author Niessner, R.; Klockow, D.; Bruynseels, F.; Van Grieken, R.
Title Investigation of heterogeneous reactions of PAH's on particle surfaces using laser microprobe mass analysis Type A1 Journal article
Year 1985 Publication International journal of environmental analytical chemistry Abbreviated Journal
Volume 22 Issue 3/4 Pages 281-295
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Artificially generated NaCl particles were coated with PAH's by using a condensation technique. These particles were exposed to reactive gases like ozone, bromine and nitrogen dioxide. The original as well as the exposed particles were investigated by fluorimetric analysis and by LAMMA (Laser Microprobe Mass Analysis) in the desorption mode, which allows the evaporation and characterization of surfaces of single particles. The results are interpreted in terms of possible heterogeneous atmospheric reactions. The reactivity of the considered PAH's towards nitrogen dioxide was found to be negligible. The structure of the reaction products formed with ozone was partially elucidated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1985AZE2300009 Publication Date 2007-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-7319 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116576 Serial 8124
Permanent link to this record
 

 
Author Ding, Y.; Maitra, S.; Arenas Esteban, D.; Bals, S.; Vrielinck, H.; Barakat, T.; Roy, S.; Van Tendeloo, G.; Liu, J.; Li, Y.; Vlad, A.; Su, B.-L.
Title Photochemical production of hydrogen peroxide by digging pro-superoxide radical carbon vacancies in carbon nitride Type A1 Journal article
Year 2022 Publication Cell reports physical science Abbreviated Journal
Volume 3 Issue 5 Pages 100874-17
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Artificial photosynthesis of H2O2, an environmentally friendly oxidant and a clean fuel, holds great promise. However, improving its efficiency and stability for industrial implementation remains highly challenging. Here, we report the visible-light H2O2 artificial photosynthesis by digging pro-superoxide radical carbon vacancies in three-dimensional hierarchical porous g-C3N4 through a simple hydrolysis-freeze-drying-thermal treatment. A significant electronic structure change is revealed upon the implantation of carbon vacancies, broadening visible-light absorption and facilitating the photogenerated charge separation. The strong electron affinity of the carbon vacancies promotes superoxide radical (O-center dot(2)-) formation, significantly boosting the H2O2 photocatalytic production. The developed photocatalyst shows an H2O2 evolution rate of 6287.5 mM g(-1) h(-1) under visible-light irradiation with a long cycling stability being the best-performing photocatalyst among all reported g-C3N4-based systems. Our work provides fundamental insight into highly active and stable photocatalysts with great potential for safe industrial H2O2 production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000805830100006 Publication Date 2022-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access OpenAccess
Notes Y.D. thanks the China Scholarship Council (201808310127) for financial support. This work is financially supported by the National Natural Science Foundation of China (U1663225) , Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) of the Chinese Ministry of Education, Program of Introducing Talents of Discipline to Universities-Plan 111 (grant no. B20002) from the Ministry of Science and Technology and the Ministry of Education of China, and the National Key R&D Program of China (2016YFA0202602) . This research was also supported by the European Commission Interreg V France-Wallonie-Vlaanderen project “DepollutAir”. Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189706 Serial 7090
Permanent link to this record
 

 
Author Slavkovic, S.; Shoara, A.A.; Churcher, Z.R.; Daems, E.; De Wael, K.; Sobott, F.; Johnson, P.E.
Title DNA binding by the antimalarial compound artemisinin Type A1 Journal article
Year 2022 Publication Scientific reports Abbreviated Journal
Volume 12 Issue 1 Pages 133
Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (down) Artemisinin (ART) is a vital medicinal compound that is used alone or as part of a combination therapy against malaria. ART is thought to function by attaching to heme covalently and alkylating a range of proteins. Using a combination of biophysical methods, we demonstrate that ART is bound by three-way junction and duplex containing DNA molecules. Binding of ART by DNA is first shown for the cocaine-binding DNA aptamer and extensively studied using this DNA molecule. Isothermal titration calorimetry methods show that the binding of ART is both entropically and enthalpically driven at physiological NaCl concentration. Native mass spectrometry methods confirm DNA binding and show that a non-covalent complex is formed. Nuclear magnetic resonance spectroscopy shows that ART binds at the three-way junction of the cocaine-binding aptamer, and that binding results in the folding of the structure-switching variant of this aptamer. This structure-switching ability was exploited using the photochrome aptamer switch assay to demonstrate that ART can be detected using this biosensing assay. This study is the first to demonstrate the DNA binding ability of ART and should lay the foundation for further work to study implications of DNA binding for the antimalarial activity of ART.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000740510500120 Publication Date 2022-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:184507 Serial 8851
Permanent link to this record
 

 
Author Daems, E.
Title Shaping up oligonucleotides : aptamer-target recognition investigated by native mass spectrometry Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 235 p.
Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Aptamers are short, synthetic DNA or RNA molecules that are characterized by a specific 3D conformation which enables specific target recognition. Aptamers are promising tools in many application fields from sensing to therapeutics. One of the major challenges in the aptamer field is understanding the relationship between the sequence and what determines the higher-order structure and specific interactions with targets. Therefore, this PhD thesis focuses on the use of different mass spectrometry (MS) based approaches to characterize aptamers and their interactions. Several of these approaches are already widely applied to study other biomolecules, such as proteins, but are still largely unexplored for aptamers and oligonucleotides in general. A first focus was put on obtaining information on the higher-order structure and conformational stability of aptamers using a combination of MS and with ion mobility (IM) spectrometry by performing collision-induced unfolding (CIU) experiments. CIU was shown to hold great promise to analyze the conformational dynamics and gas-phase stabilities of aptamers. Next, the capabilities and limitations of native IM-MS for the analysis of noncovalent interactions of aptamers were demonstrated. The conformational behavior and interactions of cocaine-binding aptamers were studied and it was found that relative binding affinities of aptamers that only differ slightly in sequence and structure can be determined using native MS. Moreover, native IM-MS allowed the detection of small conformational changes upon binding of a target, which were found to be dependent on the binding mode of the aptamer. An adaptive binding mechanism was suggested for flexible aptamers that require more reorganization upon binding. In the final part of this thesis, the importance of thoroughly characterizing and validating aptamer-target interactions before using them in an application was emphasized. Moreover, the gathered insights were applied in our own development of a proof-of-concept aptamer-based sensor. This was shown by investigating the interactions of ampicillin aptamers which were found to not bind the target they were selected for in the first place. A multi-analytical approach combining complementary techniques was used for this purpose since no single technique is generally applicable to characterize all aptamers and their interactions and to obtain a comprehensive picture of the aptamer-target interactions. Furthermore, such multi-analytical approach was used to characterize a testosterone-binding aptamer while developing an aptamer-based electrochemiluminescent sensing strategy for this target. This shows the importance of native MS, in combination with other techniques, to thoroughly understand the aptamer-target interactions in the development of a designed application.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:178116 Serial 8517
Permanent link to this record
 

 
Author Peng, L.; Kassotaki, E.; Liu, Y.; Sun, J.; Dai, X.; Pijuan, M.; Rodriguez-Roda, I.; Buttiglieri, G.; Ni, B.-J.
Title Modelling cometabolic biotransformation of sulfamethoxazole by an enriched ammonia oxidizing bacteria culture Type A1 Journal article
Year 2017 Publication Chemical engineering science Abbreviated Journal
Volume 173 Issue Pages 465-473
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Antibiotics such as sulfamethoxazole (SFX) are environmentally hazardous after being released into the aquatic environment and challenges remain in the development of engineered prevention strategies. In this work, a mathematical model was developed to describe and evaluate cometabolic biotransformation of SFX and its transformation products (TPs) in an enriched ammonia oxidizing bacteria (AOB) culture. The growth-linked cometabolic biodegradation by AOB, non-growth transformation by AOB and nongrowth transformation by heterotrophs were considered in the model framework. The production of major TPs comprising 4-Nitro-SFX, Desamino-SFX and N-4-Acetyl-SFX was also specifically modelled. The validity of the model was demonstrated through testing against literature reported data from extensive batch tests, as well as from long-term experiments in a partial nitritation sequencing batch reactor (SBR) and in a combined SBR + membrane aerated biofilm reactor performing nitrification/denitrification. Modelling results revealed that the removal efficiency of SFX increased with the increase of influent ammonium concentration, whereas the influent organic matter, hydraulic retention time and solid retention time exerted a limited effect on SFX biodegradation with the removal efficiencies varying in a narrow range. The variation of influent SFX concentration had no impact on SFX removal efficiency. The established model framework enables interpretation of a range of experimental observations on SFX biodegradation and helps to identify the optimal conditions for efficient removal. (C) 2017 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411764200039 Publication Date 2017-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:146629 Serial 8267
Permanent link to this record
 

 
Author Kim, E.; Horckmans, L.; Spooren, J.; Broos, K.; Vrancken, K.C.M.; Quaghebeur, M.
Title Recycling of a secondary lead smelting matte by selective citrate leaching of valuable metals and simultaneous recovery of hematite as a secondary resource Type A1 Journal article
Year 2017 Publication Hydrometallurgy Abbreviated Journal
Volume 169 Issue Pages 290-296
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Anew recycling process, according to the zero-waste concept, was investigated for an iron rich waste stream, more specifically a secondary lead smelting matte. The process consists of a selective citrate leaching of Pb, Cu, Ni and Zn in combination with a roasting step, leading to a simultaneous recovery of hematite as a secondary iron resource. The parameters, such as leaching time, leaching temperature, H2O2 concentration and roasting temperature, were experimentally optimized. The maximum Pb leaching efficiency was 93% and the leachability of Cu (33%) and Zn (11%) increased slightly in the presence of 0.5 M H2O2 in 1 M citrate at 25 degrees C and pH 5.5. Importantly, almost no Fe was leached (< 0.6%) from the iron rich matrix material at this condition allowing for a maximal recovery of hematite as a secondary resource after further treatment (i.e. roasting or sulfur removal). The leachability of Pb, Cu, Ni and Zn was strongly affected by the roasting temperature. Maximum leaching efficiency in 1 M citrate (25 degrees C, L/S ratio 10, pH 6.5) was 93% for Pb, 80% for Cu and 60% for Zn at a roasting temperature of 600 degrees C, while for Ni the maximum leaching efficiency of 53% was reached after roasting at 650 degrees C. Furthermore, when oxidative roasting was applied, the leaching residue consists dominantly of hematite (Fe2O3) with minor quantities of PbSO4, which can be used as pig iron ore (Fe > 60 wt%). (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401878200035 Publication Date 2017-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144298 Serial 8463
Permanent link to this record
 

 
Author Van Grieken, R.; Worobiec, A.
Title X-ray spectrometry for preventive conservation of cultural heritage Type A1 Journal article
Year 2011 Publication Pramåna: a journal of physics Abbreviated Journal
Volume 72 Issue 2 Pages 191-200
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract (down) Analytical chemistry does play a key role in the chemical characterization of the environment and it appears that X-ray spectrometry, in its many forms, is one of the most relevant analytical techniques in preventive conservation, as it is in cultural heritage research in general. X-ray spectrometry has indeed been the method of choice for the characterization of the inorganic composition of atmospheric aerosols, for a long time. We have, over the last decade, intensively used various forms of X-ray spectrometry, viz., mostly energy-dispersive X-ray fluorescence, e.g. with polarized high-energy beam excitation, and automated electron probe X-ray microanalysis, together with other techniques, to identify particle types and their sources in indoor environments, including museums, while gaseous indoor pollutants were assessed using passive diffusion samplers. In each case, both bulk aerosols and individual aerosol particles were studied. For microanalysis of single particles, we have investigated a dozen techniques, but for wide, real-life applications, automated electron probe X-ray microanalysis is the most rewarding. We have first studied atmospheric aerosols in and around the Correr Museum in Venice, many other museums in Austria, Japan and England, and in the caves with prehistoric rock paintings in Altamira, Spain. Very recently, measurements were done in the Metropolitan Museum of Art in New York and theWawel Castle in Cracow, in Italian and Polish mountain churches, in a number of museums in Belgium and the Netherlands, and in cathedrals with medieval stained glass windows. In the Correr museum, it appeared that the particles most threatening for the Bellini paintings were released by the deteriorating plaster renderings, and this could be avoided by simply improving the rendering on the museum walls. In the Wawel Castle, outdoor pollution particles, like fine soot from diesel traffic, entering via leaks in the windows and doors, and also street-deicing salts and coal burning pollution particles, brought in by visitors, mostly in winter, were found to be most worrisome. Urgent questions that are not solved at this moment pertain to the deposition processes from the atmosphere to the cultural heritage items, the critical surface interactions that take place on these items, and the establishment of suitable particle concentration standards.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288861000002 Publication Date 2011-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4289; 0973-7111 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:87025 Serial 8785
Permanent link to this record
 

 
Author Verbueken, A.; Michiels, E.; Van Grieken, R.
Title Total analysis of plant material and biological tissue by spark source mass spectrometry Type A3 Journal article
Year 1981 Publication Fresenius' Zeitschrift für analytische Chemie Abbreviated Journal
Volume 309 Issue 4 Pages 300-304
Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Analysis of biological material by spark source mass spectrometry is reported. Preliminary studies mainly based upon the analysis of the NBS standard reference material SRM-1571 (Orchard Leaves) are described. Attention is drawn to the importance of a suitable sample preparation method. The advantages of a wet digestion technique in a Teflon bomb are discussed and its use is justified by the satisfactory overall analysis precision of about 20%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2004-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-1152 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116639 Serial 8675
Permanent link to this record
 

 
Author Roekens, E.J.; Van Grieken, R.E.
Title Effects of titanium dioxide industry waste dumping on sea water chemistry Type A1 Journal article
Year 1983 Publication Water research Abbreviated Journal
Volume 17 Issue 10 Pages 1385-1392
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) An investigation was made to determine the influence of the dumping of a 1000 ton day−1, on the average, of acid-iron waste from the titanium dioxide industry into the shallow but turbulent Southern Bight of the North Sea. This waste contains some 20% sulfuric acid and 2% iron. After the passage of the barge that discharges 10 ton of waste min−1 into its wake, the vertical and horizontal distributions of the pH, iron-concentration and turbidity were measured as a function of time. It appeared that a few seconds after the discharge and for a very brief period, the pH was down to approx. 4 and the Fe-concentration was 13 mg l−1. More than 1 min after the discharge a pH below 6 and an iron-level above 3 mg l−1 could not be detected anywhere. The measured factor for waste dilution by sea water, based on the observed acid and iron concentration in the waste and in the discharge track, were around 5000 after 5 min, 9000 after 10 min and 80,000 after 20 min. Before and long after the dumping, the total iron-concentration in this Southern Bight area was around 100 μg l−1, but this high level might be due to natural causes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1983RJ42300025 Publication Date 2003-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116690 Serial 7850
Permanent link to this record
 

 
Author Lins Galdino, S.M.; Costa Dantas, C.; Van Grieken, R.
Title Radio-isotope neutron activation analysis for vanadium, manganese and tungsten in alloy steels Type A1 Journal article
Year 1987 Publication Analytica chimica acta Abbreviated Journal
Volume 196 Issue Pages 337-343
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) An instrumental neutron activation method for V, Mn and W in alloy steels with a 241 Am/Be isotopic neutron source is described. The samples were irradiated to induce the nuclear reactions 51V(n, γ) 52V, 55Mn(n, γ)56Mn, and 186W(n, γ)187W. The activities were measured with a NaI(TI) detector. Interferences on the measured photopeaks were shown to be negligible by measuring the half-lives of 62V, 56Mn and 187W.These thre elementes were determined in the range 1.512.9% in special steels; manganese in the range 0.51.6% was measured in cast irons. Calibration was done by comparison with results from wet chemistry and x-ray fluorescence spectrometry. The processing times for the vanadium, manganese and tungsten determinations were 11 min, 3 h and 26.3 h, respectively, but these were reduced greatly by intoruding a scheme wherein six samples were simultaneously irradiated and the 56Mn and 187W nuclides were measured sequentially for a series of 66 samples. The average processing time was reduced to 45 min for tungsten with a precision of 4.0% and accuracy of 3.4% and 22.8 min for manganese with a precision of 3.8% and accuracy of 3.1%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1987K058900044 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116445 Serial 8449
Permanent link to this record