toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cao, S.; Somsen, C.; Croitoru, M.; Schryvers, D.; Eggeler, G. pdf  doi
openurl 
  Title Focused ion beam/scanning electron microscopy tomography and conventional transmission electron microscopy assessment of Ni4Ti3 morphology in compression-aged Ni-rich Ni-Ti single crystals Type A1 Journal article
  Year 2010 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 62 Issue 6 Pages 399-402  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (up) The size, morphology and configuration of Ni4Ti3 precipitates in a single-crystal NiTi alloy have been investigated by two-dimensional transmission electron microscopy-based image analysis and three-dimensional reconstruction from slice-and-view images obtained in a focused ion beam/scanning electron microscopy (FIB/SEM) dual-beam system. Average distances between the precipitates measured along the compression direction correlate well between both techniques, while particle shape and configuration data is best obtained from FIB/SEM. Precipitates form pockets of B2 of 0.54 ìm in the compression direction and 1 ìm perpendicular to the compression direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000275072700020 Publication Date 2009-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited 16 Open Access  
  Notes Fwo Approved Most recent IF: 3.747; 2010 IF: 2.820  
  Call Number UA @ lucian @ c:irua:79817 Serial 1246  
Permanent link to this record
 

 
Author Cao, S.; Pourbabak, S.; Schryvers, D. pdf  doi
openurl 
  Title Quantitative 3-D morphologic and distributional study of Ni4Ti3 precipitates in a Ni51Ti49 single crystal alloy Type A1 Journal article
  Year 2012 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 66 Issue 9 Pages 650-653  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) The size, shape and distribution of Ni4Ti3 precipitates in Ni51Ti49 single crystals annealed under stress-free and 〈1 1 1〉B2 compressive conditions are studied via focused ion beam/scanning electron microscopy slice-and-view. The precipitates in the stress-free material grow in autocatalytic pockets with larger size, lower number density, flatter shape and larger inter-particle distance than in the compressed material. Nevertheless, a new quantification method called water penetration reveals that, due to the precipitate alignment, martensite can grow more easily in the compressed material perpendicular to the compression direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000302425100010 Publication Date 2012-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 3.747; 2012 IF: 2.821  
  Call Number UA @ lucian @ c:irua:97387 Serial 2743  
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Liu, D.; Jiang, Q.; van Humbeeck, J. pdf  doi
openurl 
  Title Stability of Ni in nitinol oxide surfaces Type A1 Journal article
  Year 2011 Publication Acta biomaterialia Abbreviated Journal Acta Biomater  
  Volume 7 Issue 2 Pages 892-899  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The stability of Ni in titanium oxide surface layers on nitinol wires known to release certain amounts of Ni was investigated by first principles density functional theory and transmission electron microscopy. The oxides were identified as a combination of TiO and TiO2 depending on the thickness of the layer. The calculations indicate that free Ni atoms can exist in TiO at ambient temperature while Ni particles form in TiO2, which was confirmed by the transmission electron microscopy observations. The results are discussed with respect to surface stability and Ni release due to free Ni atoms and Ni particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000286707700047 Publication Date 2010-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-7061; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 39 Open Access  
  Notes Fwo Approved Most recent IF: 6.319; 2011 IF: 4.865  
  Call Number UA @ lucian @ c:irua:85998 Serial 3128  
Permanent link to this record
 

 
Author Tzedaki, G.; M.; Turner, S.; Godet, S.; De Graeve, I.; Kernig, B.; Hasenclever, J.; Terryn, H. pdf  doi
openurl 
  Title Structure and formation mechanism of rolled-in oxide areas on aluminum lithographic printing sheets Type A1 Journal article
  Year 2013 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 68 Issue 5 Pages 233-236  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) The subsurface area introduced during rolling on the 1100 aluminum alloy series alters its surface properties, which makes it more susceptible to corrosion. A combination of different transmission electron microscopy techniques is employed to observe the orientation of small grain structures and the distribution elements in the subsurface layer. This approach provided valuable insight into the formation mechanism of the layer and the phenomena taking place during rolling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000314012000003 Publication Date 2012-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited 6 Open Access  
  Notes Fwo Approved Most recent IF: 3.747; 2013 IF: 2.968  
  Call Number UA @ lucian @ c:irua:105288 Serial 3277  
Permanent link to this record
 

 
Author Cao, S.; Nishida, M.; Schryvers, D. pdf  doi
openurl 
  Title Quantitative three-dimensional analysis of Ni4Ti3 precipitate morphology and distribution in polycrystalline Ni-Ti Type A1 Journal article
  Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 59 Issue 4 Pages 1780-1789  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The three-dimensional size, morphology and distribution of Ni4Ti3 precipitates in a Ni50.8Ti49.2 polycrystalline shape memory alloy with a heterogeneous microstructure have been investigated using a focused ion beam/scanning electron microscopy slice-and-view procedure. The mean volume, central plane diameter, thickness, aspect ratio and sphericity of the precipitates in the grain interior as well as near to the grain boundary were measured and/or calculated. The morphology of the precipitates was quantified by determining the equivalent ellipsoids with the same moments of inertia and classified according to the Zingg scheme. Also, the pair distribution functions describing the three-dimensional distributions were obtained from the coordinates of the precipitate mass centres. Based on this new data it is suggested that the existence of the heterogeneous microstructure could be due to a very small concentration gradient in the grains of the homogenized material and that the resulting multistage martensitic transformation originates in strain effects related to the size of the precipitates and scale differences of the available B2 matrix in between the precipitates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000287265100045 Publication Date 2010-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 34 Open Access  
  Notes Fwo Approved Most recent IF: 5.301; 2011 IF: 3.755  
  Call Number UA @ lucian @ c:irua:85533 Serial 2766  
Permanent link to this record
 

 
Author Mary Joy, R.; Pobedinskas, P.; Baule, N.; Bai, S.; Jannis, D.; Gauquelin, N.; Pinault-Thaury, M.-A.; Jomard, F.; Sankaran, K.J.; Rouzbahani, R.; Lloret, F.; Desta, D.; D’Haen, J.; Verbeeck, J.; Becker, M.F.; Haenen, K. pdf  url
doi  openurl
  Title The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films Type A1 Journal article
  Year 2024 Publication Acta materialia Abbreviated Journal Acta Materialia  
  Volume 264 Issue Pages 119548  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) This study reports the impact of film microstructure and composition on the Young’s modulus and residual stress in nanocrystalline diamond (NCD) thin films ( thick) grown on silicon substrates using a linear antenna microwave plasma-enhanced chemical vapor deposition (CVD) system. Combining laser acoustic wave spectroscopy to determine the elastic properties with simple wafer curvature measurements, a straightforward method to determine the intrinsic stress in NCD films is presented. Two deposition parameters are varied: (1) the substrate temperature from 400 °C to 900 °C, and (2) the [P]/[C] ratio from 0 ppm to 8090 ppm in the H2/CH4/CO2/PH3 diamond CVD plasma. The introduction of PH3 induces a transition in the morphology of the diamond film, shifting from NCD with larger grains to ultra-NCD with a smaller grain size, concurrently resulting in a decrease in Young’s modulus. Results show that the highest Young’s modulus of (113050) GPa for the undoped NCD deposited at 800 °C is comparable to single crystal diamond, indicating that NCD with excellent mechanical properties is achievable with our process for thin diamond films. Based on the film stress results, we propose the origins of tensile intrinsic stress in the diamond films. In NCD, the tensile intrinsic stress is attributed to larger grain size, while in ultra-NCD films the tensile intrinsic stress is due to grain boundaries and impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001126632800001 Publication Date 2023-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.4 Times cited Open Access Not_Open_Access  
  Notes This work was financially supported by the Special Research Fund (BOF) via Methusalem NANO network, the Research Foundation – Flanders (FWO) via Project G0D4920N, and the CORNET project nr 263-EN “ULTRAHARD: Ultrahard optical diamond coatings” (2020–2021). Approved Most recent IF: 9.4; 2024 IF: 5.301  
  Call Number EMAT @ emat @c:irua:202169 Serial 8989  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Stergar, E.; Pakarinen, J.; Verwerft, M.; Yang, Y.; Hofer, C.; Schnitzer, R.; Lamm, S.; Felfer, P.; Schryvers, D. pdf  url
doi  openurl
  Title The role of Ti and TiC nanoprecipitates in radiation resistant austenitic steel: A nanoscale study Type A1 Journal article
  Year 2020 Publication Acta Materialia Abbreviated Journal Acta Mater  
  Volume 197 Issue Pages 184-197  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) This work encompasses an in-depth transmission electron microscopy and atom probe tomography study of Ti-stabilized austenitic steel irradiated with Fe-ions. The focus is on radiation induced segregation and precipitation, and in particular on how Ti and TiC affect these processes. A 15-15Ti steel (grade: DIN 1.4970) in two thermo-mechanical states (cold-worked and aged) was irradiated at different temperatures up to a dose of 40 dpa. At low irradiation temperatures, the cold-worked and aged materials evolved to a similar microstructure dominated by small Si and Ni clusters, corresponding to segregation to small point defect clusters. TiC precipitates, initially present in the aged material, were found to be unstable under these irradiation conditions. Elevated irradiation temperatures resulted in the nucleation of nanometer sized Cr enriched TiC precipitates surrounded by Si and Ni enriched shells. In addition, nanometer sized Ti- and Mn-enriched G-phase (M6Ni16Si7) precipitates formed, often attached to TiC precipitates. Post irradiation, larger number densities of TiC were observed in the cold-worked material compared to the aged material. This was correlated with a lower volume fraction of G-phase. The findings suggest that at elevated irradiation temperatures, the precipitate-matrix interface is an important point defect sink and contributes to the improved radiation resistance of this material. The study is a first of its kind on stabilized steel and demonstrates the significance of the small Ti addition to the evolution of the microstructure under irradiation. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000564767000001 Publication Date 2020-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.4 Times cited Open Access Not_Open_Access  
  Notes ; This work was supported by ENGIE [contract number 2015-AC-007 e BSUEZ6900]; the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07051D14517 as part of a Nuclear Science User Facilities experiment; and by the MYRRHA program at SCK-CEN, Belgium. Funding of the Austrian BMK (846933) in the framework of the program “Production of the future” and the “BMK Professorship for Industry” is gratefully acknowledged. We want to thank the staffat MIBL for assisting with the ion irradiations as well as the staffat CAES for assisting with FIB work and conducting APT measurements. ; Approved Most recent IF: 9.4; 2020 IF: 5.301  
  Call Number UA @ admin @ c:irua:171956 Serial 6626  
Permanent link to this record
 

 
Author Delville, R.; Malard, B.; Pilch, J.; Schryvers, D. pdf  doi
openurl 
  Title Microstructure changes during non-conventional heat treatment of thin NiTi wires by pulsed electric current studied by transmission electron microscopy Type A1 Journal article
  Year 2010 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 58 Issue 13 Pages 4503-4515  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Transmission electron microscopy, electrical resistivity measurements and mechanical testing were employed to investigate the evolution of microstructure and functional superelastic properties of 0.1 mm diameter as-drawn NiTi wires subjected to a non-conventional heat treatment by controlled electric pulse currents. This method enables a better control of the recovery and recrystallization processes taking place during the heat treatment and accordingly a better control on the final microstructure. Using a stepwise approach of millisecond pulse annealing, it is shown how the microstructure evolves from a severely deformed state with no functional properties to an optimal nanograined microstructure (2050 nm) that is partially recovered through polygonization and partially recrystallized and that has the best functional properties. Such a microstructure is highly resistant against dislocation slip upon cycling, while microstructures annealed for longer times and showing mostly recrystallized grains were prone to dislocation slip, particularly as the grain size exceeds 200 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000279787100020 Publication Date 2010-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 110 Open Access  
  Notes Multimat; FWO IAA Approved Most recent IF: 5.301; 2010 IF: 3.791  
  Call Number UA @ lucian @ c:irua:83279 Serial 2062  
Permanent link to this record
 

 
Author Tirumalasetty, G.K.; van Huis, M.A.; Kwakernaak, C.; Sietsma, J.; Sloof, W.G.; Zandbergen, H.W. pdf  doi
openurl 
  Title Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel Type A1 Journal article
  Year 2012 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 60 Issue 3 Pages 1311-1321  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Uniaxial straining experiments were performed on a rolled and annealed Si-alloyed TRIP (transformation-induced plasticity) steel sheet in order to assess the role of its microstructure on the mechanical stability of austenite grains with respect to martensitic transformation. The transformation behavior of individual metastable austenite grains was studied both at the surface and inside the bulk of the material using electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD) by deforming the samples to different strain levels up to about 20%. A comparison of the XRD and EBSD results revealed that the retained austenite grains at the surface have a stronger tendency to transform than the austenite grains in the bulk of the material. The deformation-induced changes of individual austenite grains before and after straining were monitored with EBSD. Three different types of austenite grains can be distinguished that have different transformation behaviors: austenite grains at the grain boundaries between ferrite grains, twinned austenite grains, and embedded austenite grains that are completely surrounded by a single ferrite grain. It was found that twinned austenite grains and the austenite grains present at the grain boundaries between larger ferrite grains typically transform first, i.e. are less stable, in contrast to austenite grains that are completely embedded in a larger ferrite grain. In the latter case, straining leads to rotations of the harder austenite grain within the softer ferrite matrix before the austenite transforms into martensite. The analysis suggests that austenite grain rotation behavior is also a significant factor contributing to enhancement of the ductility. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000301157900054 Publication Date 2011-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 80 Open Access  
  Notes Approved Most recent IF: 5.301; 2012 IF: 3.941  
  Call Number UA @ lucian @ c:irua:97210 Serial 630  
Permanent link to this record
 

 
Author Chen, X.; Cao, S.; Ikeda, T.; Srivastava, V.; Snyder, G.J.; Schryvers, D.; James, R.D. pdf  doi
openurl 
  Title A weak compatibility condition for precipitation with application to the microstructure of PbTe-Sb2Te3 thermoelectrics Type A1 Journal article
  Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 59 Issue 15 Pages 6124-6132  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) We propose a weak condition of compatibility between phases applicable to cases exhibiting full or partial coherence and Widmanstätten microstructure. The condition is applied to the study of Sb2Te3 precipitates in a PbTe matrix in a thermoelectric alloy. The weak condition of compatibility predicts elongated precipitates lying on a cone determined by a transformation stretch tensor. Comparison of this cone with the long directions of precipitates determined by a slice-and-view method of scanning electron microscopy combined with focused ion beam sectioning shows good agreement between theory and experiment. A further study of the morphology of precipitates by the Eshelby method suggests that interfacial energy also plays a role and gives an approximate value of interfacial energy per unit area of 250 dyn cm−1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000294086900026 Publication Date 2011-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 8 Open Access  
  Notes Approved Most recent IF: 5.301; 2011 IF: 3.755  
  Call Number UA @ lucian @ c:irua:92388 Serial 3911  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: