|   | 
Details
   web
Records
Author Zarenia, M.; Pereira, J.M., Jr.; Peeters, F.M.; Farias, G.A.
Title Snake states in graphene quantum dots in the presence of a p-n junction Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 3 Pages 035426
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the magnetic interface states of graphene quantum dots that contain p-n junctions. Within a tight-binding approach, we consider rectangular quantum dots in the presence of a perpendicular magnetic field containing p-n as well as p-n-p and n-p-n junctions. The results show the interplay between the edge states associated with the zigzag terminations of the sample and the snake states that arise at the p-n junction due to the overlap between electron and hole states at the potential interface. Remarkable localized states are found at the crossing of the p-n junction with the zigzag edge having a dumb-bell-shaped electron distribution. The results are presented as a function of the junction parameters and the applied magnetic flux. DOI: 10.1103/PhysRevB.87.035426
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000313941000003 Publication Date 2013-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), the Brazilian agency CNPq (Pronex), and the bilateral projects between Flanders and Brazil and the collaboration project FWO-CNPq. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:110087 Serial 3048
Permanent link to this record
 

 
Author Milovanovic, S.P.; Masir, M.R.; Peeters, F.M.
Title Bilayer graphene Hall bar with a pn-junction Type A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 114 Issue 11 Pages 113706
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the magnetic field dependence of the Hall and the bend resistances for a ballistic Hall bar structure containing a pn-junction sculptured from a bilayer of graphene. The electric response is obtained using the billiard model, and we investigate the cases of bilayer graphene with and without a band gap. Two different conduction regimes are possible: (i) both sides of the junction have the same carrier type and (ii) one side of the junction is n-type while the other one is p-type. The first case shows Hall plateau-like features in the Hall resistance that fade away as the band gap opens. The second case exhibits a bend resistance that is asymmetric in magnetic field as a consequence of snake states along the pn-interface, where the maximum is shifted away from zero magnetic field.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000324827200031 Publication Date 2013-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 3 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:111169 Serial 234
Permanent link to this record
 

 
Author Couet, S.; Peelaers, H.; Trekels, M.; Houben, K.; Petermann, C.; Hu, M.Y.; Zhao, J.Y.; Bi, W.; Alp, E.E.; Menéndez, E.; Partoens, B.; Peeters, F.M.; Van Bael, M.J.; Vantomme, A.; Temst, K.;
Title Interplay between lattice dynamics and superconductivity in Nb3Sn thin films Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 4 Pages 045437-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the link between superconductivity and atomic vibrations in Nb3Sn films with a thickness ranging from 10 to 50 nm. The challenge of measuring the phonon density of states (PDOS) of these films has been tackled by employing the technique of nuclear inelastic scattering by Sn-119 isotopes to reveal the Sn-partial phonon density of states. With the support of ab initio calculations, we evaluate the effect of reduced film thickness on the PDOS. This approach allows us to estimate the changes in superconducting critical temperature T-c induced by phonon confinement, which turned out to be limited to a few tenths of K. The presented method is successful for the Nb3Sn system and paves the way for more systematic studies of the role of phonon confinement in Sn-containing superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322529900004 Publication Date 2013-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; The authors would like to cordially thank Dr. Rudolf Ruffer from the nuclear resonant scattering group of the ESRF for the support and gratefully acknowledge the ESRF for providing beamtime for the preliminary phonon study. S. C., K. H., and E. M. thank the Flemish Science Foundation (FWO-Vl) for their personal fellowship. This work was supported by FWO-Vl, the Methusalem program of the Flemish government, and the Concerted Research Action program (GOA/09/ 006) and (GOA/14/007). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109801 Serial 1702
Permanent link to this record
 

 
Author Pascucci, F.; Conti, S.; Perali, A.; Tempère, J.; Neilson, D.
Title Effects of intralayer correlations on electron-hole double-layer superfluidity Type A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume 109 Issue 9 Pages 094512-94515
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract (down) We investigate the intralayer correlations acting within the layers in a superfluid system of electron -hole spatially separated layers. In this system, superfluidity is predicted to be almost exclusively confined to the Bose-Einstein condensate (BEC) and crossover regimes where the electron -hole pairs are well localized. In this case, Hartree-Fock is an excellent approximation for the intralayer correlations. We find in the BEC regime that the effect of the intralayer correlations on superfluid properties is negligible but in the BCS-BEC crossover regime the superfluid gap is significantly weakened by the intralayer correlations. This is caused by the intralayer correlations boosting the number of low -energy particle -hole excitations that drive the screening. We further find that the intralayer correlations suppress the predicted phenomenon in which the average pair size passes through a minimum as the crossover regime is traversed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001199662600001 Publication Date 2024-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205476 Serial 9145
Permanent link to this record
 

 
Author Liu, Y.; Cheng, F.; Li, X.J.; Peeters, F.M.; Chang, K.
Title Tuning of anisotropy in two-electron quantum dots by spin-orbit interactions Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 99 Issue 3 Pages 032102,1-032102,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the influence of the spin-orbit interactions (SOIs) on the electron distribution and the optical absorption of a two-electron quantum dot. It is shown that the interplay between the SOIs makes the two-electron quantum dot behave like two laterally coupled quantum dots and the anisotropic distribution can be rotated from [110] to [11®0] by reversing the direction of the perpendicular electric field and detect it through the optical absorption spectrum.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000293679000026 Publication Date 2011-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes ; This work was supported by NSFC Grants No. 16760525405, 10874175 and 11004017 and the Belgian Science Policy 168(IAP). ; Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:92473 Serial 3749
Permanent link to this record
 

 
Author Li, B.; Djotyan, A.P.; Hao, Y.L.; Avetisyan, A.A.; Peeters, F.M.
Title Effect of a perpendicular magnetic field on the shallow donor states near a semiconductor-metal interface Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 7 Pages 075313-75319
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the influence of an external perpendicular magnetic field on the lowest-energy states of an electron bound to a donor which is located near a semiconductor-metal interface. The problem is treated within the effective mass approach and the lowest-energy states are obtained through (1) the “numerically exact” finite element method, and (2) a variational approach using a trial wave function where all image charges that emerge due to the presence of the metallic gate are taken into account. The trial wave functions are constructed such that they reduce to an exponential behavior for sufficiently small magnetic fields and become Gaussian for intermediate and large magnetic fields. The average electron-donor distance can be controlled by the external magnetic field. We find that the size of the 2p(z) state depends strongly on the magnetic field when the donor is close to the interface, showing a nonmonotonic behavior, in contrast with the ground and the other excited states. DOI: 10.1103/PhysRevB.87.075313
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000314874800017 Publication Date 2013-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107664 Serial 793
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P.
Title Electrical and thermal-properties of a 2-dimensional electron-gas in a one-dimensional periodic potential Type A1 Journal article
Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 46 Issue 8 Pages 4667-4680
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the influence of a periodic weak modulation along the x direction on the electrical and thermal properties of a two-dimensional electron gas in the presence of a perpendicular magnetic field. The modulation lifts the degeneracy of the Landau levels and leads to one-dimensional magnetic bands whose bandwidth oscillates as a function of the magnetic field. At weak magnetic fields this gives rise to the Weiss oscillations in the magnetoresistance, discovered recently, which have a very weakly temperature-dependent amplitude and a period proportional to square-root n(e), when n(e) is the electron density. Diffusion-current contributions, proportional to the square of the bandwidth, dominate rho(xx), and collisional contributions, varying approximately as the square of the density of states, dominate rho(yy). The result is that rho(xx) and rho(yy) oscillate out of phase as observed. Asymptotic analytical expressions are presented for the conductivity tensor. Similar oscillations, of much smaller amplitude, occur in the thermodynamic quantities, such as the magnetization, the susceptibility, and the specific heat. We also predict oscillations in the Hall resistance, the cyclotron resonance position, the linewidth, as well as in the thermal conductivity and thermopower. The components of the thermal-resistance tensor have a magnetic-field dependence similar to that of the electrical-resistivity tensor.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1992JK72500032 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 148 Open Access
Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #
Call Number UA @ lucian @ c:irua:103028 Serial 889
Permanent link to this record
 

 
Author Silva, F.C.O.; Menezes, R.M.; Cabral, L.R.E.; de Souza Silva, C.C.
Title Formation and stability of conformal spirals in confined 2D crystals Type A1 Journal article
Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 32 Issue 50 Pages 505401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the ground-state and dynamical properties of nonuniform two-dimensional (2D) clusters of long-range interacting particles. We demonstrate that, when the confining external potential is designed to produce an approximate 1/ r 2 density profile, the particles crystallize into highly ordered structures featuring spiral crystalline lines. Despite the strong inhomogeneity of the observed configurations, most of them are characterized by small density of topological defects, typical of conformal crystals, and the net topological charge induced by the simply-connected geometry of the system is concentrated near the cluster center. These crystals are shown to be robust with respect to thermal fluctuations up to a certain threshold temperature, above which the net charge is progressively redistributed from the center to the rest of the system and the topological order is lost. The crystals are also resilient to the shear stress produced by a small nonuniform azimuthal force field, rotating as a rigid body (RB). For larger forces, topological defects proliferate and the RB rotation gives place to plastic flow.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record
Impact Factor 2.7 Times cited Open Access
Notes Approved Most recent IF: 2.7; 2020 IF: 2.649
Call Number UA @ admin @ c:irua:191093 Serial 7978
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M.
Title Correlated few-particle states in artificial bipolar molecule Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 65 Issue 23 Pages 233302-233304
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the ground and excited states of a bipolar artificial molecule composed of two vertically coupled quantum dots containing different type of carriers-electrons and holes-in equilibrium. The approach based on exact diagonalization is used and reveals an intricate pattern of ground-state angular momentum switching and a rearrangement of approximate single-particle levels as a function of the interdot coupling strength.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000176767900019 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:104154 Serial 519
Permanent link to this record
 

 
Author Dantas, D.S.; Chaves, A.; Farias, G.A.; Ramos, A.C.A.; Peeters, F.M.
Title Low-dimensional confining structures on the surface of helium films suspended on designed cavities Type A1 Journal article
Year 2013 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys
Volume 173 Issue 3-4 Pages 207-226
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the formation of quantum confined structures on the surface of a liquid helium film suspended on a nanostructured substrate. We show theoretically that, by nanostructuring the substrate, it is possible to change the geometry of the liquid helium surface, opening the possibility of designing and controlling the formation of valleys with different shapes. By applying an external electric field perpendicular to the substrate plane, surface electrons can be trapped into these valleys, as in a quantum dot. We investigate how the external parameters, such as the electric field strength and the height of the liquid helium bath, can be tuned to control the energy spectrum of the trapped surface electrons.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000324820300008 Publication Date 2013-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291;1573-7357; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.3 Times cited 1 Open Access
Notes ; This work has received financial support from the Brazilian National Research Council (CNPq), Fundacao Cearense de Apoio ao Desenvolvimento Cientifico e Tecnologico (Funcap), CAPES and Pronex/CNPq/Funcap. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the bilateral project between CNPq and FWO-Vl. ; Approved Most recent IF: 1.3; 2013 IF: 1.036
Call Number UA @ lucian @ c:irua:111140 Serial 1845
Permanent link to this record
 

 
Author Van Pottelberge, R.; Van Duppen, B.; Peeters, F.M.
Title Electrical dipole on gapped graphene : bound states and atomic collapse Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 16 Pages 165420
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the energy spectrum, wave functions, and local density of states of an electrical dipole placed on a sheet of gapped graphene as function of the charge strength Z alpha for different sizes of the dipole and for different regularization parameters. The dipole is modeled as consisting of a positive and negative charge. Bound states are found within the gap region with some energy levels that anticross and others that cross as function of the impurity strength Z alpha. The anticrossings are more pronounced and move to higher charges Z alpha when the length of the dipole decreases. These energy levels turn into atomic collapse states when they enter the positive (or negative) energy continuum. A smooth transition from the single-impurity behavior to the dipole one is observed: The states diving towards the continuum in the single-impurity case are gradually replaced by a series of anticrossings that represent a continuation of the diving states in the single-impurity case. By studying the local density of states at the edge of the dipole we show how the series of anticrossings persist in the positive and negative continuum.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000447302700010 Publication Date 2018-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research grant for R.V.P. and a postdoctoral grant for B.V.D. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:154728UA @ admin @ c:irua:154728 Serial 5094
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K.
Title Theory of trions in quantum wells Type A1 Journal article
Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, JUL 30-AUG 03, 2001, PRAGUE, CZECH REPUBLIC Abbreviated Journal Physica E
Volume 12 Issue 1-4 Pages 543-545
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) We investigate the energy levels of the negatively and positively charged excitons (also called trions) in a 200 Angstrom wide GaAs quantum well in the presence of a perpendicular magnetic field. A comparison is made with the experimental results of Glasberg et al. (Phys. Rev. B. 59 (1999) R10 425) and of Yusa et al. (cond-mat/0103505). (C) 2002 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000175206300134 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 2 Open Access
Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
Call Number UA @ lucian @ c:irua:103903 Serial 3624
Permanent link to this record
 

 
Author Chen, Q.; Li, L.L.; Peeters, F.M.
Title Inner and outer ring states of MoS2 quantum rings : energy spectrum, charge and spin currents Type A1 Journal article
Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 125 Issue 24 Pages 244303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the energy levels and persistent currents of MoS2 quantum rings having different shapes and edge types in the presence of a perpendicular magnetic field by means of the tight-binding approach. We find states localized at the inner and outer boundaries of the ring. These energy levels exhibit different magnetic field dependences for the inner and outer ring states due to their different localization properties. They both exhibit the usual Aharanov-Bohm oscillations but with different oscillation periods. In the presence of spin-orbit coupling, we show distinct spin and charge persistent currents for inner and outer ring states. We find well-defined spin currents with negligibly small charge currents. This is because the local currents of spin-up and -down states flow in opposite directions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000474439600026 Publication Date 2019-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 10 Open Access
Notes ; This work was supported by the Hunan Provincial Natural Science Foundation of China (Nos. 2015JJ2040, 2018JJ2080, and 2018JJ4047), the National Natural Science Foundation of China (NNSFC) (No. 51502087), the Scientific Research Fund of Hunan Provincial Education Department (Nos. 15A042, 15B056, and 17B060), and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:161309 Serial 5417
Permanent link to this record
 

 
Author Grujić, M.; Zarenia, M.; Tadić, M.; Peeters, F.M.
Title Interband optical absorption in a circular graphene quantum dot Type A1 Journal article
Year 2012 Publication Physica scripta Abbreviated Journal Phys Scripta
Volume T149 Issue Pages 014056-014056,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the energy levels and optical properties of a circular graphene quantum dot in the presence of an external magnetic field perpendicular to the dot. Based on the Dirac-Weyl equation and assuming zero outward current at the edge of the dot we present the results for two different types of boundary conditions, i.e. infinite-mass (IMBC) and zigzag boundary conditions. We found that the dot with zigzag edges displays a zero-energy state in the energy spectra while this is not the case for the IMBCs. For both boundary conditions, the confinement becomes dominated by the magnetic field, where the energy levels converge to the Landau levels as the magnetic field increases. The effect of boundary conditions on the electron-and hole-energy states is found to affect the interband absorption spectra, where we found larger absorption in the case of IMBCs. The selection rules for interband optical transitions are determined and discussed for both boundary conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Stockholm Editor
Language Wos 000303523500057 Publication Date 2012-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.28 Times cited 5 Open Access
Notes ; This work was supported by the EuroGraphene program of the ESF (project CONGRAN), the Ministry of Education and Science of Serbia, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.28; 2012 IF: 1.032
Call Number UA @ lucian @ c:irua:99136 Serial 1688
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.
Title Extra Dirac points in the energy spectrum for superlattices on single-layer graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 7 Pages 075438,1-075438,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the emergence of extra Dirac points in the electronic structure of a periodically spaced barrier system, i.e., a superlattice, on single-layer graphene, using a Dirac-type Hamiltonian. Using square barriers allows us to find analytic expressions for the occurrence and location of these new Dirac points in k space and for the renormalization of the electron velocity near them in the low-energy range. In the general case of unequal barrier and well widths the new Dirac points move away from the Fermi level and for given heights of the potential barriers there is a minimum and maximum barrier width outside of which the new Dirac points disappear. The effect of these extra Dirac points on the density of states and on the conductivity is investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000274998200133 Publication Date 2010-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 211 Open Access
Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Brazilian Council for Research (CNPq), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:81767 Serial 1159
Permanent link to this record
 

 
Author Topalovic, D.B.; Arsoski, V.V.; Tadic, M.Z.; Peeters, F.M.
Title Asymmetric versus symmetric HgTe/CdxHg1-x Te double quantum wells: Bandgap tuning without electric field Type A1 Journal article
Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 128 Issue 6 Pages 064301-64308
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the electron states in double asymmetric HgTe / Cd x Hg 1 – x Te quantum wells grown along the [ 001 ] direction. The subbands are computed by means of the envelope function approximation applied to the eight-band Kane k . mml:mspace width=“.1em”mml:mspace p model. The asymmetry of the confining potential of the double quantum wells results in a gap opening, which is absent in the symmetric system where it can only be induced by an applied electric field. The bandgap and the subbands are affected by spin-orbit coupling, which is a consequence of the asymmetry of the confining potential. The electron-like and hole-like states are mainly confined in different quantum wells, and the enhanced hybridization between them opens a spin-dependent hybridization gap at a finite in-plane wavevector. We show that both the ratio of the widths of the two quantum wells and the mole fraction of the C d x H g 1 – x Te barrier control both the energy gap between the hole-like states and the hybridization gap. The energy subbands are shown to exhibit inverted ordering, and therefore, a nontrivial topological phase could emerge in the system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000561339300001 Publication Date 2020-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited 3 Open Access
Notes ; This research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.2; 2020 IF: 2.068
Call Number UA @ admin @ c:irua:171146 Serial 6453
Permanent link to this record
 

 
Author Topalovic, D.B.; Arsoski, V.V.; Tadic, M.Z.; Peeters, F.M.
Title Confined electron states in two-dimensional HgTe in magnetic field : quantum dot versus quantum ring behavior Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 12 Pages 125304
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the electron states and optical absorption in square- and hexagonal-shaped two-dimensional (2D) HgTe quantum dots and quantum rings in the presence of a perpendicular magnetic field. The electronic structure is modeled by means of the sp(3)d(5)s* tight-binding method within the nearest-neighbor approximation. Both bulklike and edge states appear in the energy spectrum. The bulklike states in quantum rings exhibit Aharonov-Bohm oscillations in magnetic field, whereas no such oscillations are found in quantum dots, which is ascribed to the different topology of the two systems. When magnetic field varies, all the edge states in square quantum dots appear as quasibands composed of almost fully flat levels, whereas some edge states in quantum rings are found to oscillate with magnetic field. However, the edge states in hexagonal quantum dots are localized like in rings. The absorption spectra of all the structures consist of numerous absorption lines, which substantially overlap even for small line broadening. The absorption lines in the infrared are found to originate from transitions between edge states. It is shown that the magnetic field can be used to efficiently tune the optical absorption of HgTe 2D quantum dot and quantum ring systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486638400007 Publication Date 2019-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by Projects No. III 41028, No. III 42008, and No. III 45003 funded by the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:162787 Serial 5409
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Tempere, J.; Nori, F.
Title Pattern formation in vortex matter with pinning and frustrated intervortex interactions Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 95 Pages 104519
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract (down) We investigate the effects related to vortex-core deformations when vortices approach each other. As a result of these vortex-core deformations, the vortex-vortex interaction effectively acquires an attractive component leading to a variety of vortex patterns typical for systems with nonmonotonic repulsive-attractive interaction, such as stripes and labyrinths. The core deformations are anisotropic and can induce frustration in the vortex-vortex interaction. In turn, this frustration has an impact on the resulting vortex patterns, which are analyzed in the presence of additional random pinning, as a function of the pinning strength. This analysis can be applicable to vortices in multiband superconductors or to vortices in Bose-Einstein condensates.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000399138800006 Publication Date 2017-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; We acknowledge fruitful discussions with E. Babaev and V. Gladilin. This work is partially supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20150595), the National Natural Science Foundation of China (Grants No. NSFC-U1432135, No. 11611140101, and No. 11674054), the “Odysseus” program of the Flemish Government and Flemish Research Foundation (FWO-Vl), the Flemish Research Foundation (through Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N), the Research Fund of the University of Antwerp, the RIKEN iTHES Project, the MURI Center for Dynamic Magneto-Optics via the AFOSR Award No. FA9550-14-1-0040, the IMPACT program of JST, a Grant-in-Aid for Scientific Research (A), the Japan Society for the Promotion of Science (KAKENHI), CREST, and a grant from the John Templeton Foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:142429 Serial 4602
Permanent link to this record
 

 
Author Leao, S.A.; Hipolito, O.; Peeters, F.M.
Title Inter and intrasubband transitions via lo phonons in quantum wires Type A1 Journal article
Year 1993 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst
Volume 13 Issue 1 Pages 37-40
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the effects of the finite confining potential V0 on the absorption and emission scattering rates of electrons interacting with LO phonons for a cylindrical GaAs quantum wire. The emission rates are qualitatively similar to those of the 2D case. The absorption rates on the other hand exhibit two different regimes: 1) for a wire radius smaller than a certain value (80 Å in the case where V0 = 190 meV) the behavior is similar to the 2D and 3D analogues, but 2) for larger radius the absorption rates initially increase with increasing energy, reach a maximum value and then decrease monotonicaly. A complete study is made as a function of wire radius, and electron energy.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1993KK13700007 Publication Date 2002-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.097 Times cited 8 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:103011 Serial 1680
Permanent link to this record
 

 
Author Covaci, L.; Berciu, M.
Title Holstein polaron: The effect of coupling to multiple-phonon modes Type A1 Journal article
Year 2007 Publication Epl Abbreviated Journal Epl-Europhys Lett
Volume 80 Issue 6 Pages 67001
Keywords A1 Journal article
Abstract (down) We investigate the effects of coupling to multiple-phonon modes on the properties of a Holstein polaron. To this end, we generalize the Momentum Average approximations MA((0)) and MA((1)) to deal with multiple-phonon modes. As for a single-phonon mode, these approximations are found to be numerically very efficient. They become exact for very weak or very strong couplings, and are highly accurate in the intermediate regimes, e.g. the spectral weights obey exactly the first six, respectively eight, sum rules. Our results show that the effect on ground-state properties is cumulative in nature. As a result, if the effective coupling to one mode is much larger than to all the others, this mode effectively determines the ground-state properties. However, even very weak coupling to a second phonon mode has important non-perturbational effects on the higher-energy spectrum, in particular on the dispersion and the phonon statistics of the polaron band. This has important consequences on the analysis and interpretation of data for real materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000251648300016 Publication Date 2007-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links
Impact Factor 1.957 Times cited 9 Open Access
Notes Approved Most recent IF: 1.957; 2007 IF: 2.206
Call Number UA @ lucian @ Serial 4431
Permanent link to this record
 

 
Author Zarenia, M.; Conti, S.; Peeters, F.M.; Neilson, D.
Title Coulomb drag in strongly coupled quantum wells : temperature dependence of the many-body correlations Type A1 Journal article
Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 115 Issue 20 Pages 202105
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the effect of the temperature dependence of many-body correlations on hole-hole Coulomb drag in strongly coupled GaAs/GaAlAs double quantum wells. For arbitrary temperatures, we obtained the correlations using the classical-map hypernetted-chain approach. We compare the temperature dependence of the resulting drag resistivities rho D(T) at different densities with rho D(T) calculated assuming correlations fixed at zero temperature. Comparing the results with those when correlations are completely neglected, we confirm that correlations significantly increase the drag. We find that the drag becomes sensitive to the temperature dependence of T greater than or similar to 2TF, twice the Fermi temperature. Our results show excellent agreement with available experimental data. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000498619400007 Publication Date 2019-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 1 Open Access
Notes Approved Most recent IF: 3.411
Call Number UA @ admin @ c:irua:165135 Serial 6291
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Van Duppen, B.; Peeters, F.M.
Title Infrared to terahertz optical conductivity of n-type and p-type monolayer MoS2 in the presence of Rashba spin-orbit coupling Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 155432
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the effect of Rashba spin-orbit coupling (SOC) on the optoelectronic properties of n- and p-type monolayer MoS2. The optical conductivity is calculated within the Kubo formalism. We find that the spin-flip transitions enabled by the Rashba SOC result in a wide absorption window in the optical spectrum. Furthermore, we evaluate the effects of the polarization direction of the radiation, temperature, carrier density, and the strength of the Rashba spin-orbit parameter on the optical conductivity. We find that the position, width, and shape of the absorption peak or absorption window can be tuned by varying these parameters. This study shows that monolayer MoS2 can be a promising tunable optical and optoelectronic material that is active in the infrared to terahertz spectral range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386097800003 Publication Date 2016-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 20 Open Access
Notes ; Y.M.X. acknowledges financial support from the China Scholarship Council (CSC). This work was also supported by the National Natural Science Foundation of China (Grant No. 11574319), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. B.V.D. is supported by a Ph.D. fellowship from the Flemish Science Foundation. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:138175 Serial 4355
Permanent link to this record
 

 
Author Shakouri, K.; Masir, M.R.; Jellal, A.; Choubabi, E.B.; Peeters, F.M.
Title Effect of spin-orbit couplings in graphene with and without potential modulation Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 11 Pages 115408-115409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the effect of Rashba and intrinsic spin-orbit couplings on the electronic properties and spin configurations of Dirac fermions confined in: (i) a flat graphene sheet, (ii) a graphene wire with p-n-p structure, and (iii) a superlattice of graphene wires. The interplay between the spin-orbit interaction mechanisms breaks the electron-hole symmetry and the spin configuration induced by Rashba spin-orbit coupling lacks inversion symmetry in k space. We show that the Rashba spin-orbit interaction doubles the Fabry-Perot resonant modes in the transmission spectrum of a graphene wire and opens new channels for the electron transmission. Moreover, it leads to the appearance of spin split extra Dirac cones in the energy spectrum of a graphene superlattice. It is shown that the spin of the electrons and holes confined in a flat graphene sheet is always perpendicular to their motion while this is not the case for the other nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000323944600005 Publication Date 2013-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 36 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by A.J. and E.B.C. They also thank the Deanship of Scientific Research at King Faisal University for funding this work under the Project No. 130193. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:110716 Serial 836
Permanent link to this record
 

 
Author de Sousa, A.A.; Chaves, A.; Pereira, T.A.S.; de Farias, G.A.; Peeters, F.M.
Title Wave packet propagation through branched quantum rings under applied magnetic fields Type A1 Journal article
Year 2019 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 114 Issue 114 Pages 113598
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) We investigate the effect of opening and closing pathways on the dynamics of electron wave packets in semiconductor quantum rings with different geometries. Our analysis is based on the time evolution of an electron wave packet, within the effective-mass approximation. We demonstrate that opening an extra channel in the quantum ring does not necessarily improve the electron transmission and, depending on the extra channel width, may even reduce it, either due to enhancement of quantum scattering or due to interference. In the latter case, transmission reduction can be controlled through the Aharonov-Bohm phase of the wave function, via an applied magnetic field. It is also shown that, closing one of the channels of the quantum ring, system improves the transmission probability under specific conditions, an effect which is a quantum analog of the Braess paradox.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482637000039 Publication Date 2019-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited Open Access
Notes ; This work was financially supported by PRONEX/CNPq/FUNCAP, Science Without Boards (Ciencias Sem Fronteiras) and the bilateral project CNPq-FWO. A. A. Sousa was financially supported by CAPES, under the PDSE contract BEX 7177/ 13-5. T. A. S. Pereira was financially supported by PRONEX/CNPq/FAPEMAT 850109/ 2009 and by CAPES under process BEX 3299/13-9. ; Approved Most recent IF: 2.221
Call Number UA @ admin @ c:irua:162777 Serial 5432
Permanent link to this record
 

 
Author Zhang, H.Y.; Xiao, Y.M.; N. Li, Q.; Ding, L.; Van Duppen, B.; Xu, W.; Peeters, F.M.
Title Anisotropic and tunable optical conductivity of a two-dimensional semi-Dirac system in the presence of elliptically polarized radiation Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 11 Pages 115423-115429
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the effect of ellipticity ratio of the polarized radiation field on optoelectronic properties of a two-dimensional (2D) semi-Dirac (SD) system. The optical conductivity is calculated within the energy balance equation approach derived from the semiclassical Boltzmann equation. We find that there exists the anisotropic optical absorption induced via both the intra-and interband electronic transition channels in the perpendicular xx and yy directions. Furthermore, we examine the effects of the ellipticity ratio, the temperature, the carrier density, and the band-gap parameter on the optical conductivity of the 2D SD system placed in transverse and vertical directions, respectively. It is shown that the ellipticity ratio, temperature, carrier density, and band-gap parameter can play the important roles in tuning the strength, peak position, and shape of the optical conductivity spectrum. The results obtained from this study indicate that the 2D SD system can be a promising anisotropic and tunable optical and optoelectronic material for applications in innovative 2D optical and optoelectronic devices, which are active in the infrared and terahertz bandwidths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000802810700002 Publication Date 2022-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:188660 Serial 7125
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Peeters, F.M.; Farias, G. de A.
Title Topological confinement in an antisymmetric potential in bilayer graphene in the presence of a magnetic field Type A1 Journal article
Year 2011 Publication Nanoscale research letters Abbreviated Journal Nanoscale Res Lett
Volume 6 Issue Pages 452,1-452,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the effect of an external magnetic field on the carrier states that are localized at a potential kink and a kink-antikink in bilayer graphene. These chiral states are localized at the interface between two potential regions with opposite signs.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000293299800001 Publication Date 2011-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1556-276X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.833 Times cited 4 Open Access
Notes ; This work was supported by the Brazilian agency CNPq (Pronex), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the bilateral projects between Flanders and Brazil and FWO-CNPq. ; Approved Most recent IF: 2.833; 2011 IF: NA
Call Number UA @ lucian @ c:irua:91745 Serial 3674
Permanent link to this record
 

 
Author Rakhimov, K.Y.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Wavepacket scattering of Dirac and Schrödinger particles on potential and magnetic barriers Type A1 Journal article
Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 23 Issue 27 Pages 275801,1-275801,16
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the dynamics of a charged particle moving in a graphene layer and in a two-dimensional electron gas, where it obeys the Dirac and the Schrödinger equations, respectively. The charge carriers are described as Gaussian wavepackets. The dynamics of the wavepackets is studied numerically by solving both quantum-mechanical and relativistic equations of motion. The scattering of such wavepackets by step-like magnetic and potential barriers is analysed for different values of wavepacket energy and width. We find: (1) that the average position of the wavepacket does not coincide with the classical trajectory, and (2) that, for slanted incidence, the path of the centre of mass of the wavepacket does not have to penetrate the barrier during the scattering process. Trembling motion of the charged particle in graphene is observed in the absence of an external magnetic field and can be enhanced by a substrate-induced mass term.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000291993600009 Publication Date 2011-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 32 Open Access
Notes ; Discussions with A Matulis are gratefully acknowledged. KR is beneficiary of a mobility grant from the Belgian Federal Science Policy Office, co-funded by the European Commission and was supported in part by a grant of the Third World Academy of Sciences (ref. 09-188 RG/PHYS/AS-I). In addition, this work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES, the Bilateral programme between Flanders and Brazil, the joint project CNPq-FWO, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.649; 2011 IF: 2.546
Call Number UA @ lucian @ c:irua:90880 Serial 3908
Permanent link to this record
 

 
Author Moors, K.; Contino, A.; Van de Put, M.L.; Vandenberghe, W.G.; Fischetti, M., V; Magnus, W.; Sorée, B.
Title Theoretical study of scattering in graphene ribbons in the presence of structural and atomistic edge roughness Type A1 Journal article
Year 2019 Publication Physical review materials Abbreviated Journal
Volume 3 Issue 2 Pages 024001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the diffusive electron-transport properties of charge-doped graphene ribbons and nanoribbons with imperfect edges. We consider different regimes of edge scattering, ranging from wide graphene ribbons with (partially) diffusive edge scattering to ribbons with large width variations and nanoribbons with atomistic edge roughness. For the latter, we introduce an approach based on pseudopotentials, allowing for an atomistic treatment of the band structure and the scattering potential, on the self-consistent solution of the Boltzmann transport equation within the relaxation-time approximation and taking into account the edge-roughness properties and statistics. The resulting resistivity depends strongly on the ribbon orientation, with zigzag (armchair) ribbons showing the smallest (largest) resistivity and intermediate ribbon orientations exhibiting intermediate resistivity values. The results also show clear resistivity peaks, corresponding to peaks in the density of states due to the confinement-induced subband quantization, except for armchair-edge ribbons that show a very strong width dependence because of their claromatic behavior. Furthermore, we identify a strong interplay between the relative position of the two valleys of graphene along the transport direction, the correlation profile of the atomistic edge roughness, and the chiral valley modes, leading to a peculiar strongly suppressed resistivity regime, most pronounced for the zigzag orientation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458161800001 Publication Date 2019-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes ; We acknowledge the Research Foundation – Flanders (FWO) for supporting K.M.'s research visit at the University of Texas at Dallas, as well as the support by the National Research Fund Luxembourg (FNR) with ATTRACT Grant No. 7556175. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:157499 Serial 5235
Permanent link to this record
 

 
Author Galvan-Moya, J.E.; Misko, V.R.; Peeters, F.M.
Title Generic ordering of structural transitions in quasi-one-dimensional Wigner crystals Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 9 Pages 094111
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the dependence of the structural phase transitions in an infinite quasi-one-dimensional system of repulsively interacting particles on the profile of the confining channel. Three different functional expressions for the confinement potential related to real experimental systems are used that can be tuned continuously from a parabolic to a hard-wall potential in order to find a thorough understanding of the ordering of the chainlike structure transitions. We resolve the long-standing issue why the most theories predicted a 1-2-4-3-4 sequence of chain configurations with increasing density, while some experiments found the 1-2-3-4 sequence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342127000001 Publication Date 2014-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Odysseus and Methusalem programmes of the Flemish government. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119904 Serial 1326
Permanent link to this record
 

 
Author Linek, J.; Wyszynski, M.; Müller, B.; Korinski, D.; Milošević, M.V.; Kleiner, R.; Koelle, D.
Title On the coupling of magnetic moments to superconducting quantum interference devices Type A1 Journal article
Year 2024 Publication Superconductor science and technology Abbreviated Journal
Volume 37 Issue 2 Pages 025010-25012
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We investigate the coupling factor phi( mu) that quantifies the magnetic flux phi per magnetic moment mu of a point-like magnetic dipole that couples to a superconducting quantum interference device (SQUID). Representing the dipole by a tiny current-carrying (Amperian) loop, the reciprocity of mutual inductances of SQUID and Amperian loop provides an elegant way of calculating phi(mu)(r,e(mu)) vs. position r and orientation e(mu) of the dipole anywhere in space from the magnetic field B-J(r) produced by a supercurrent circulating in the SQUID loop. We use numerical simulations based on London and Ginzburg-Landau theory to calculate phi (mu) from the supercurrent density distributions in various superconducting loop geometries. We treat the far-field regime ( r greater than or similar to a= inner size of the SQUID loop) with the dipole placed on (oriented along) the symmetry axis of circular or square shaped loops. We compare expressions for phi (mu) from simple filamentary loop models with simulation results for loops with finite width w (outer size A > alpha), thickness d and London penetration depth lambda(L )and show that for thin ( d << alpha ) and narrow (w < alpha) loops the introduction of an effective loop size a(eff) in the filamentary loop-model expressions results in good agreement with simulations. For a dipole placed right in the center of the loop, simulations provide an expression phi(mu)(a,A,d,lambda(L)) that covers a wide parameter range. In the near-field regime (dipole centered at small distance z above one SQUID arm) only coupling to a single strip representing the SQUID arm has to be considered. For this case, we compare simulations with an analytical expression derived for a homogeneous current density distribution, which yields excellent agreement for lambda(L)>w,d . Moreover, we analyze the improvement of phi(mu) provided by the introduction of a narrow constriction in the SQUID arm below the magnetic dipole.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001145725500001 Publication Date 2024-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.6 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.6; 2024 IF: 2.878
Call Number UA @ admin @ c:irua:202759 Serial 9067
Permanent link to this record