toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Abakumov, A.M.; Alekseeva, A.M.; Rozova, M.G.; Antipov, E.V.; Lebedev, O.I.; Van Tendeloo, G.
  Title Ordering of tetrahedral chains in the Sr2MnGaO5 brownmillerite Type A1 Journal article
  Year 2003 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 174 Issue 2 Pages 319-328
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (up) Tetrahedral chain ordering in the Sr2MnGaO5 structure is studied using electron diffraction (ED) and high-resolution electron microscopy. The ED patterns show the presence of satellite reflections, which indicate a commensurately modulated structure with a = 5.4056(8) Angstrom b 16.171(3) Angstrom, c = 5.5592(7) Angstrom, q – 1/2c*, superspace group Immma(00gamma,)s00. The Superstructure arises due to ordering of the two types of symmetry related tetrahedral chains (L and R) according to a ... LRLR ... sequence, where L and R chains alternate along the c-axis within the same (GaO) layer. Numerous defects at different structural levels were observed, comprising interleaving L and R chains, violation of the ... LRLR ... chain sequence within one layer, different stacking modes of the ... LRLR ... ordered layers with subsequent alternation of blocks of different width along the h-axis of the brownmillerite subcell and island fragmentation of the modulated superstructure. By in situ heating ED experiments it is found that the long-range ordering of the tetrahedral chains is stable tip to 665degreesC and is completely suppressed at 905degreesC. (C) 2003 Elsevier Inc. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000185180500011 Publication Date 2003-07-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 34 Open Access
  Notes Approved Most recent IF: 2.299; 2003 IF: 1.413
  Call Number UA @ lucian @ c:irua:94846 Serial 2506
Permanent link to this record
 

 
Author Rusakov, D.; Abakumov, A.M.; Yamaura, K.; Belik, A.A.; Van Tendeloo, G.; Takayama-Muromachi, E.
  Title Structural evolution of the BiFeO3-LaFeO3 system Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 23 Issue 2 Pages 285-292
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (up) The (1 − x)BiFeO3−xLaFeO3 system has been investigated and characterized by room-temperature and high-temperature laboratory and synchrotron powder X-ray diffraction, electron diffraction, high-resolution transmission electron microscopy, differential scanning calorimetry, and magnetization measurements. At room temperature, the ferroelectric R3c phase is observed for 0.0 ≤ x ≤ 0.10. The PbZrO3-related √2ap × 2√2ap × 4ap superstructure (where ap is the parameter of the cubic perovskite subcell) is observed for Bi0.82La0.18FeO3, while an incommensurately modulated phase is formed for 0.19 ≤ x ≤ 0.30 with the √2ap × 2ap × √2ap basic unit cell. The GdFeO3-type phase with space group Pnma (√2ap × 2ap × √2ap) is stable at 0.50 ≤ x ≤ 1. Bi0.82La0.18FeO3 has no detectable homogeneity range (space group Pnam, a = 5.6004(1) Å, b = 11.2493(3) Å, c = 15.6179(3) Å). The incommensurately modulated Bi0.75La0.25FeO3 structure was solved from synchrotron X-ray powder diffraction data (Imma(00γ)s00 superspace group, a = 5.5956(1) Å, b = 7.8171(1) Å, c = 5.62055(8) Å, q = 0.4855(4)c*, RP = 0.023, RwP = 0.033). In this structure, cooperative displacements of the Bi and O atoms occur, which order within the (AO) (where A = Bi, La) layers, resulting in an antipolar structure. Local fluctuations of the intralayer antipolar ordering are compensated by an interaction with the neighboring (AO) layers. A coupling of the antipolar displacements with the cooperative tilting distortion of the perovskite octahedral framework is proposed as the origin of the incommensurability. All the phases transform to the GdFeO3-type structure at high temperatures. Bi0.82La0.18FeO3 shows an intermediate PbZrO3-type phase with √2ap × 2√2ap × 2ap (space group Pbam; a = 5.6154(2) Å, b = 11.2710(4) Å, and c = 7.8248(2) Å at 570 K). The compounds in the compositional range of 0.18 ≤ x ≤ 0.95 are canted antiferromagnets.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000286160800021 Publication Date 2010-12-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 133 Open Access
  Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
  Call Number UA @ lucian @ c:irua:88650 Serial 3236
Permanent link to this record
 

 
Author Yan, L.; Niu, H.J.; Duong, G.V.; Suchomel, M.R.; Bacsa, J.; Chalker, P.R.; Hadermann, J.; Van Tendeloo, G.; Rosseinsky, M.J.
  Title Cation ordering within the perovskite block of a six-layer Ruddlesden-Popper oxide from layer-by-layer growth artificial interfaces in complex unit cells Type A1 Journal article
  Year 2011 Publication Chemical science Abbreviated Journal Chem Sci
  Volume 2 Issue 2 Pages 261-272
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (up) The (AO)(ABO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3, but low-temperature layer-by-layer thin film methods allow the preparation of materials with thicker perovskite blocks, exploiting high surface mobility and lattice matching with the substrate. This paper describes the growth of an n = 6 member CaO[(CSMO)2(LCMO)2 (CSMO)2] in which the six unit cell perovskite block is sub-divided into two central La0.67Ca0.33MnO3 (LCMO) and two terminal Ca0.85Sm0.15MnO3 (CSMO) layers to allow stabilization of the rock salt layer and variation of the transition metal charge.
  Address
  Corporate Author Thesis
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
  Language Wos 000286327600010 Publication Date 2010-11-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.668 Times cited 16 Open Access
  Notes Approved Most recent IF: 8.668; 2011 IF: 7.525
  Call Number UA @ lucian @ c:irua:88652 Serial 300
Permanent link to this record
 

 
Author Arenas-Vivo, A.; Rojas, S.; Ocaña, I.; Torres, A.; Liras, M.; Salles, F.; Arenas-Esteban, D.; Bals, S.; Ávila, D.; Horcajada, P.
  Title Ultrafast reproducible synthesis of a Ag-nanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow Type A1 Journal article
  Year 2021 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A
  Volume 9 Issue 28 Pages 15704-15713
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (up) The (photo)catalytic properties of metal–organic frameworks (MOFs) can be enhanced by post-synthetic inclusion of metallic species in their porosity. Due to their extraordinarily high surface area and well defined porous structure, MOFs can be used for the stabilization of metal nanoparticles with adjustable size within their porosity. Originally, we present here an optimized ultrafast photoreduction protocol for the<italic>in situ</italic>synthesis of tiny and monodisperse silver nanoclusters (AgNCs) homogeneously supported on a photoactive porous titanium carboxylate MIL-125-NH<sub>2</sub>MOF. The strong metal–framework interaction between –NH<sub>2</sub>and Ag atoms influences the AgNC growth, leading to the surfactant-free efficient catalyst AgNC@MIL-125-NH<sub>2</sub>with improved visible light absorption. The potential use of AgNC@MIL-125-NH<sub>2</sub>was further tested in challenging applications: (i) the photodegradation of the emerging organic contaminants (EOCs) methylene blue (MB-dye) and sulfamethazine (SMT-antibiotic) in water treatment, and (ii) the catalytic hydrogenation of<italic>p</italic>-nitroaniline (4-NA) to<italic>p</italic>-phenylenediamine (PPD) with industrial interest. It is noteworthy that compared with the pristine MIL-125-NH<sub>2</sub>, the composite presents an improved catalytic activity and stability, being able to photodegrade 92% of MB in 60 min and 96% of SMT in 30 min, and transform 100% of 4-NA to PPD in 30 min. Aside from these very good results, this study describes for the first time the use of a MOF in a visible light continuous flow reactor for wastewater treatment. With only 10 mg of AgNC@MIL-125-NH<sub>2</sub>, high SMT removal efficiency over 70% is maintained after >2 h under water flow conditions found in real wastewater treatment plants, signaling a future real application of MOFs in water remediation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000671839200001 Publication Date 2021-06-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.867 Times cited 18 Open Access OpenAccess
  Notes Comunidad de Madrid, CAM PEJD-2016/IND-2828 Talento Modality 2, 2017-T2/IND-5149 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, Raphuel project (ENE2016-79608-C2-1-R) Retos Project MAT2017-84385-R ; Ministerio de Ciencia e Innovación, Juan de la Cierva Incorporación Fellowship (grant agreement no. IJC2019-038894-I) MOFSEIDON project (PID2019-104228RB-I00) Ramón y Cajal, Grant Agreements 2014-15039 and 2015-18677 ; Fundación BBVA, IN[17]CBBQUI_0197 ; H2020 European Research Council, ERC Consolidator Grant REALNANO 815128 Grant Agreement no. 731019 (EUSMI) ; sygmaSB; Approved Most recent IF: 8.867
  Call Number EMAT @ emat @c:irua:179791 Serial 6802
Permanent link to this record
 

 
Author Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.J.; Canal, C.; Choi, E.H.; Coulombe, S.; Donkó, Z.; Graves, D.B.; Hamaguchi, S.; Hegemann, D.; Hori, M.; Kim, H.-h; Kroesen, G.M.W.; Kushner, M.J.; Laricchiuta, A.; Li, X.; Magin, T.E.; Mededovic Thagard, S.; Miller, V.; Murphy, A.B.; Oehrlein, G.S.; Puac, N.; Sankaran, R.M.; Samukawa, S.; Shiratani, M.; Šimek, M.; Tarasenko, N.; Terashima, K.; Thomas Jr, E.; Trieschmann, J.; Tsikata, S.; Turner, M.M.; van der Walt, I.J.; van de Sanden, M.C.M.; von Woedtke, T.
  Title The 2022 Plasma Roadmap: low temperature plasma science and technology Type A1 Journal article
  Year 2022 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
  Volume 55 Issue 37 Pages 373001
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (up) The 2022 Roadmap is the next update in the series of Plasma Roadmaps published by<italic>Journal of Physics</italic>D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5–10 years.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000821410400001 Publication Date 2022-09-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.4 Times cited Open Access OpenAccess
  Notes Grants-in-Aid for Scientific Research, 15H05736 ; FCT-Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Russian Foundation for Basic Research, 20-02-00320 ; Lam Research Corporation; National Office for Research, Development, and Innovation of Hungary, K-134462 ; Czech Science Foundation, GA 18-04676S ; Japan Society for the Promotion of Science, 20H00142 ; MESTD of Republic of Serbia, 451-03-68/2021-14/200024 ; NASA; Dutch Foundation for Scientific Research; U.S. National Science Foundation, CBET 1703439 ; U.S. Department of Energy, DE-SC-0001234 ; Grantová Agentura České Republiky, GA 18-04676S ; Army Research Office, W911NF-20-1-0105 ; National Natural Science Foundation of China, 51825702 ; European Research Council, Starting Grant #259354 ; European Space Agency, GSTP ; U.S. Air Force Office of Scientific Research, FA9550-17-1-0370 ; Safran Aircraft Engines, POSEIDON ; Agence Nationale de la Recherche, ANR-16-CHIN-003–01 ; H2020 European Research Council, ERC Synergy Grant 810182 SCOPE ; JST CREST, JPMJCR19R3 ; Federal German Ministry of Education and Research, 03Z22DN11 ; National Research Foundation of Korea, 2016K1A4A3914113 ; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021_169180 ; Departament d’Innovació, Universitats i Empresa, Generalitat de Catalunya, SGR2017-1165 ; Ministerio de Economía, Industria y Competitividad, Gobierno de España, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; Deutsche Forschungsgemeinschaft, 138690629 – TRR 87 ; Grant-in-Aid for Exploratory Research, 18K18753 ; Approved Most recent IF: 3.4
  Call Number PLASMANT @ plasmant @c:irua:189203 Serial 7075
Permanent link to this record
 

 
Author Xu, H.; Li, H.; Gauquelin, N.; Chen, X.; Wu, W.-F.; Zhao, Y.; Si, L.; Tian, D.; Li, L.; Gan, Y.; Qi, S.; Li, M.; Hu, F.; Sun, J.; Jannis, D.; Yu, P.; Chen, G.; Zhong, Z.; Radovic, M.; Verbeeck, J.; Chen, Y.; Shen, B.
  Title Giant tunability of Rashba splitting at cation-exchanged polar oxide interfaces by selective orbital hybridization Type A1 Journal article
  Year 2024 Publication Advanced materials Abbreviated Journal
  Volume Issue Pages
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (up) The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces. An unambiguous cation exchange is discovered across the interfaces of (001), (110), and (111) KTaO3 2D electron gases fabricated at room temperature. Remarkably, the (111) interfaces with the highest superconducting transition temperature also turn out to show the strongest electron-phonon interaction and the largest Rashba spin splitting. image
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001219658400001 Publication Date 2024-03-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
  Impact Factor 29.4 Times cited Open Access
  Notes Approved Most recent IF: 29.4; 2024 IF: 19.791
  Call Number UA @ admin @ c:irua:206037 Serial 9152
Permanent link to this record
 

 
Author Su, Y.; Prestat, E.; Hu, C.; Puthiyapura, V.K.; Neek-Amal, M.; Xiao, H.; Huang, K.; Kravets, V.G.; Haigh, S.J.; Hardacre, C.; Peeters, F.M.; Nair, R.R.
  Title Self-limiting growth of two-dimensional palladium between graphene oxide layers Type A1 Journal article
  Year 2019 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 19 Issue 7 Pages 4678-4683
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract (up) The ability of different materials to display self-limiting growth has recently attracted an enormous amount of attention because of the importance of nanoscale materials in applications for catalysis, energy conversion, (opto)-electronics, and so forth. Here, we show that the electrochemical deposition of palladium (Pd) between graphene oxide (GO) sheets result in the self-limiting growth of 5-nm-thick Pd nanosheets. The self-limiting growth is found to be a consequence of the strong interaction of Pd with the confining GO sheets, which results in the bulk growth of Pd being energetically unfavorable for larger thicknesses. Furthermore, we have successfully carried out liquid exfoliation of the resulting Pd-GO laminates to isolate Pd nanosheets and have demonstrated their high efficiency in continuous flow catalysis and electrocatalysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000475533900060 Publication Date 2019-06-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 17 Open Access
  Notes ; This work was supported by the Royal Society, Engineering and Physical Sciences Research Council, U.K. (EP/S019367/1, EP/P025021/1, EP/K016946/1, and EP/ P009050/1), Graphene Flagship, and European Research Council (contract 679689 and EvoluTEM). We thank Dr. Sheng Zheng and Dr. K. S. Vasu at the University of Manchester for assisting us with sample preparation and characterization. The authors acknowledge the use of the facilities at the Henry Royce Institute for Advanced Materials and associated support services. V.K.P. and C.H. are grateful for the resources and support provided via membership in the UK Catalysis Hub Consortium and funding by EPSRC (Portfolio grants EP/K014706/2, EP/K014668/1, EP/K014854/1, EP/K014714/1, and EP/I019693/1). F.M.P. and M.N.-A. acknowledge the support from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 12.712
  Call Number UA @ admin @ c:irua:161245 Serial 5426
Permanent link to this record
 

 
Author Bueken, B.; Van Velthoven, N.; Willhammar, T.; Stassin, T.; Stassen, I.; Keen, D.A.; Baron, G.V.; Denayer, J.F.M.; Ameloot, R.; Bals, S.; De Vos, D.; Bennett, T.D.
  Title Gel-based morphological design of zirconium metal-organic frameworks Type A1 Journal article
  Year 2017 Publication Chemical science Abbreviated Journal Chem Sci
  Volume 8 Issue 8 Pages 3939-3948
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (up) The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero-or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X – H, NH2, NO2, (OH)(2)), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N-2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 mm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.
  Address
  Corporate Author Thesis
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
  Language Wos 000400553000077 Publication Date 2017-03-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.668 Times cited 168 Open Access OpenAccess
  Notes ; B. B., T. S. and I. S. acknowledge the FWO Flanders (doctoral and post-doctoral grants). T. W. acknowledges a post-doctoral grant from the Swedish Research Council. T. D. B. acknowledges the Royal Society (University Research Fellowship) and Trinity Hall (University of Cambridge) for funding. S. B. and D. D. V. are grateful for funding by Belspo (IAP 7/05 P6/27) and by the FWO Flanders. D. D. V. further acknowledges funding from the European Research Council (project H-CCAT). S. B. acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors acknowledge Arnau Carne and Shuhei Furukawa for assistance with supercritical CO<INF>2</INF> extraction, and Charles Ghesquiere for assistance in synthesis. ; Ecas_Sara Approved Most recent IF: 8.668
  Call Number UA @ lucian @ c:irua:152643UA @ admin @ c:irua:152643 Serial 5143
Permanent link to this record
 

 
Author Spiller, M.
  Title Measuring adaptive capacity of urban wastewater infrastructure : change impact and change propagation Type A1 Journal article
  Year 2017 Publication The science of the total environment Abbreviated Journal
  Volume 601-602 Issue Pages 571-579
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract (up) The ability of urban wastewater systems to adapt and transform as a response to change is an integral part of sustainable development. This requires technology and infrastructure that can be adapted to new operational challenges. In this study the adaptive capacity of urban wastewater systems is evaluated by assessing the interdependencies between system components. In interdependent and therefore tightly coupled systems, changes to one systems component will require alteration elsewhere in the system, therefore impairing the capacity of these systems to be changed. The aim of this paper is to develop a methodology to evaluate the adaptive capacity of urban wastewater systems by assessing how change drivers and innovation affect existing wastewater technology and infrastructure. The methodology comprises 7 steps and applies a change impact table and a design structure matrix that are completed by experts during workshops. Change impact tables quantify where change drivers, such as energy neutrality and resource recovery, require innovation in a system. The design structure matrix is a tool to quantify emerging changes that are a result of the innovation. The method is applied for the change driver of energy neutrality and shown for two innovations: a decentralised upflow anaerobic sludge blanket reactor followed by an anammox process and a conventional activated sludge treatment with enhanced chemical precipitation and high temperature-high pressure hydrolysis. The results show that the energy neutrality of wastewater systems can be address by either innovation in the decentralised or centralised treatment. The quantification of the emerging changes for both innovations indicates that the decentralised treatment is more disruptive, or in other words, the system needs to undergo more adaptation. It is concluded that the change impact and change propagation method can be used to characterise and quantify the technological or infrastructural transformations. In addition, it provides insight into the stakeholders affected by change.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000406294900057 Publication Date 2017-05-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:143926 Serial 8212
Permanent link to this record
 

 
Author Çakir, D.; Sahin, H.; Peeters, F.M.
  Title Doping of rhenium disulfide monolayers : a systematic first principles study Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 16 Issue 31 Pages 16771-16779
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) The absence of a direct-to-indirect band gap transition in ReS2 when going from the monolayer to bulk makes it special among the other semiconducting transition metal dichalcogenides. The functionalization of this promising layered material emerges as a necessity for the next generation technological applications. Here, the structural, electronic, and magnetic properties of substitutionally doped ReS2 monolayers at either the S or Re site were systematically studied by using first principles density functional calculations. We found that substitutional doping of ReS2 depends sensitively on the growth conditions of ReS2. Among the large number of non-metallic atoms, namely H, B, C, Se, Te, F, Br, Cl, As, P. and N, we identified the most promising candidates for n-type and p-type doping of ReS2. While Cl is an ideal candidate for n-type doping, P appears to be the most promising candidate for p-type doping of the ReS2 monolayer. We also investigated the doping of ReS2 with metal atoms, namely Mo, W, Ti, V. Cr, Co, Fe, Mn, Ni, Cu, Nb, Zn, Ru, Os and Pt. Mo, Nb, Ti, and V atoms are found to be easily incorporated in a single layer of ReS2 as substitutional impurities at the Re site for all growth conditions considered in this work. Tuning chemical potentials of dopant atoms energetically makes it possible to dope ReS2 with Fe, Co, Cr, Mn, W, Ru, and Os at the Re site. We observe a robust trend for the magnetic moments when substituting a Re atom with metal atoms such that depending on the electronic configuration of dopant atoms, the net magnetic moment of the doped ReS2 becomes either 0 or 1 mu(B). Among the metallic dopants, Mo is the best candidate for p-type doping of ReS2 owing to its favorable energetics and promising electronic properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000340075700048 Publication Date 2014-07-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 58 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2014 IF: 4.493
  Call Number UA @ lucian @ c:irua:118742 Serial 752
Permanent link to this record
 

 
Author Miliani, C.; Monico, L.; Melo, M.J.; Fantacci, S.; Angelin, E.M.; Romani, A.; Janssens, K.
  Title Photochemistry of Artists' Dyes and Pigments : towards better understanding and prevention of colour change in works of art Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 57 Issue 25 Pages 7324-7334
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract (up) The absorption of light gives a pigment its colour and its reason for being, but it also creates excited states, that is, new molecules with an energy excess that can be dissipated through degradation pathways. Photodegradation processes provoke long-term, cumulative and irreversible colour changes (fading, darkening, blanching) of which the prediction and prevention are challenging tasks. Of all the environmental risks that affect heritage materials, light exposure is the only one that cannot be controlled without any impact on the optimal display of the exhibit. Light-induced alterations are not only associated with the pigment itself but also with its interactions with support/binder and, in turn, are further complicated by the nature of the environmental conditions. In this Minireview we investigate how chemistry, encompassing multi-scale analytical investigations of works of art, computational modelling and physical and chemical studies contributes to improve our prediction of artwork appearance before degradation and to establish effective preventive conservation strategies.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000434949200006 Publication Date 2018-04-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited 10 Open Access
  Notes ; We acknowledge: ACS and APS for the permission to adapt Figure 1c,d; RSC to adapt Figures 1e, 3c,d and 4a; Wiley and IUCr to adapt Figures 3b and 4b-d; for the detail of a Andean textile in Figure 5, Museum of Fine Arts, Boston, USA; for the illuminated initial in Figure 6, Torre do Tombo (ANTT). Financial support from the H2020 project IPERION-CH (GA. 654028) is gratefully acknowledged. ; Approved Most recent IF: 11.994
  Call Number UA @ admin @ c:irua:153184 Serial 5769
Permanent link to this record
 

 
Author Opherden, L.; Sieger, M.; Pahlke, P.; Hühne, R.; Schultz, L.; Meledin, A.; Van Tendeloo, G.; Nast, R.; Holzapfel, B.; Bianchetti, M.; MacManus-Driscoll, J.L.; Hänisch, J.
  Title Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
  Volume 6 Issue 6 Pages 21188
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (up) The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000370364500001 Publication Date 2016-02-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.259 Times cited 39 Open Access
  Notes The authors gratefully acknowledge J. Scheiter, U. Besold, and U. Fiedler for technical assistance. This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432. Approved Most recent IF: 4.259
  Call Number c:irua:131920 Serial 4026
Permanent link to this record
 

 
Author Bhatia, H.; Keshavarz, M.; Martin, C.; Van Gaal, L.; Zhang, Y.; de Coen, B.; Schrenker, N.J.; Valli, D.; Ottesen, M.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Hofkens, J.; Debroye, E.
  Title Achieving High Moisture Tolerance in Pseudohalide Perovskite Nanocrystals for Light-Emitting Diode Application Type A1 Journal Article
  Year 2023 Publication ACS Applied Optical Materials Abbreviated Journal ACS Appl. Opt. Mater.
  Volume 1 Issue 6 Pages 1184-1191
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract (up) The addition of potassium thiocyanate (KSCN) to the FAPbBr3 structure and subsequent post-treatment of nanocrystals (NCs) lead to high quantum confinement, resulting in a photoluminescent quantum yield (PLQY) approaching unity and microsecond decay times. This synergistic approach demonstrated exceptional stability under humid conditions, retaining 70% of the PLQY for over a month, while the untreated NCs degrade within 24 h. Additionally, the devices incorporating the post-treated NCs displayed 1.5% external quantum efficiency (EQE), a 5-fold improvement over untreated devices. These results provide promising opportunities for the use of perovskites in moisture-stable optoelectronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2023-06-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2771-9855 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access OpenAccess
  Notes Hercules Foundation, HER/11/14 ; European Commission; Ministerio de Ciencia e Innovaci?n, PID2021-128761OA-C22 ; European Regional Development Fund; Vlaamse regering, CASAS2 Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, 1238622N 1514220N 1S45223N G.0B39.15 G.0B49.15 G098319N S002019N ZW15_09-GOH6316 ; Onderzoeksraad, KU Leuven, C14/19/079 db/21/006/bm iBOF-21-085 STG/21/010 ; Junta de Comunidades de Castilla-La Mancha, SBPLY/21/180501/000127 ; H2020 European Research Council, 642196 815128 ; Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:201011 Serial 8975
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M.
  Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
  Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
  Volume 4 Issue 16 Pages 6029-6035
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract (up) The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000374790700033 Publication Date 2016-03-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.867 Times cited 202 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867
  Call Number UA @ lucian @ c:irua:144763 Serial 4669
Permanent link to this record
 

 
Author Demiroglu, I.; Peeters, F.M.; Gulseren, O.; Cakir, D.; Sevik, C.
  Title Alkali metal intercalation in MXene/graphene heterostructures : a new platform for ion battery applications Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
  Volume 10 Issue 4 Pages 727-734
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract (up) The adsorption and diffusion of Na, K, and Ca atoms on MXene/graphene heterostructures of MXene systems Sc2C(OH)(2), Ti2CO2, and V2CO2 are systematically investigated by using first-principles methods. We found that alkali metal intercalation is energetically favorable and thermally stable for Ti2CO2/graphene and V2CO2/graphene heterostructures but not for Sc2C(OH)(2). Diffusion kinetics calculations showed the advantage of MXene/graphene heterostructures over sole MXene systems as the energy barriers are halved for the considered alkali metals. Low energy barriers are found for Na and K ions, which are promising for fast charge/discharge rates. Calculated voltage profiles reveal that estimated high capacities can be fully achieved for Na ion in V2CO2/graphene and Ti2CO2/graphene heterostructures. Our results indicate that Ti2CO2/graphene and V2CO2/graphene electrode materials are very promising for Na ion battery applications. The former could be exploited for low voltage applications while the latter will be more appropriate for higher voltages.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000459948800005 Publication Date 2019-01-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.353 Times cited 88 Open Access
  Notes ; We acknowledge the support from the TUBITAK (116F080) and the BAGEP Award of the Science Academy. Part of this work was supported by the FLAG -ERA project TRANS-2D-TMD. A part of this work was supported by University of North Dakota Early Career Award (Grant number: 20622-4000-02624). We also acknowledge financial support from ND EPSCoR through NSF grant OIA-1355466. Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and Computational Research Center (HPC Linux cluster) at the University of North Dakota. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. ; Approved Most recent IF: 9.353
  Call Number UA @ admin @ c:irua:158618 Serial 5194
Permanent link to this record
 

 
Author Sahin, H.; Peeters, F.M.
  Title Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 87 Issue 8 Pages 085423-85429
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale. DOI: 10.1103/PhysRevB.87.085423
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000315146500008 Publication Date 2013-02-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 281 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
  Call Number UA @ lucian @ c:irua:107663 Serial 62
Permanent link to this record
 

 
Author Seyed-Talebi, S.M.; Beheshtian, J.; Neek-Amal, M.
  Title Doping effect on the adsorption of NH3 molecule onto graphene quantum dot : from the physisorption to the chemisorption Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 114 Issue 12 Pages 124307-7
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) The adsorption of ammonia molecule onto a graphene hexagonal flake, aluminum (Al) and boron (B) doped graphene flakes (graphene quantum dots, GQDs) are investigated using density functional theory. We found that NH3 molecule is absorbed to the hollow site through the physisorption mechanism without altering the electronic properties of GQD. However, the adsorption energy of NH3 molecule onto the Al- and B-doped GQDs increases with respect GQD resulting chemisorption. The adsorption of NH3 onto the Al-doped and B-doped GQDs makes graphene locally buckled, i.e., B-doped and Al-doped GQDs are not planar. The adsorption mechanism onto a GQD is different than that of graphene. This study reveals important features of the edge passivation and doping effects of the adsorption mechanism of external molecules onto the graphene quantum dots. (C) 2013 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000325391100057 Publication Date 2013-09-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 10 Open Access
  Notes ; This work was supported by the EU-Marie Curie IIF Fellowship/299855 for M.-N.A. ; Approved Most recent IF: 2.068; 2013 IF: 2.185
  Call Number UA @ lucian @ c:irua:112201 Serial 750
Permanent link to this record
 

 
Author Tit, N.; Al Ezzi, M.M.; Abdullah, H.M.; Yusupov, M.; Kouser, S.; Bahlouli, H.; Yamani, Z.H.
  Title Detection of CO2 using CNT-based sensors: Role of Fe catalyst on sensitivity and selectivity Type A1 Journal article
  Year 2017 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys
  Volume 186 Issue 186 Pages 353-364
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (up) The adsorption of CO2 on surfaces of graphene and carbon nanotubes (CNTs), decorated with Fe atoms, are investigated using the self-consistent-charge density-functional tight-binding (SCC-DFTB) method, neglecting the heat effects. Fe ad-atoms are more stable when they are dispersed on hollow sites. They introduce a large density of states at the Fermi level (N-F); where keeping such density low would help in gas sensing. Furthermore, the Fe ad-atom can weaken the C=O double bonds of the chemisorbed CO2 molecule, paving the way for oxygen atoms to drain more charges from Fe. Consequently, chemisorption of CO2 molecules reduces both N-F and the conductance while it enhances the sensitivity with the increasing gas dose. Conducting armchair CNTs (ac-CNTs) have higher sensitivity than graphene and semiconducting zigzag CNTs (zz-CNT5). Comparative study of sensitivity of ac-CNT-Fe composite towards various gases (e.g., O-2, N-2, H-2, H2O, CO and CO2) has shown high sensitivity and selectivity towards CO, CO2 and H2O gases. (C) 2016 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000390621200044 Publication Date 2016-11-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.084 Times cited 17 Open Access Not_Open_Access
  Notes Approved Most recent IF: 2.084
  Call Number UA @ lucian @ c:irua:140333 Serial 4465
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Ziabari, A.A.; Khatibani, A.B.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D.
  Title Adsorption of habitat and industry-relevant molecules on the MoSi₂N₄ monolayer Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
  Volume 564 Issue Pages 150326
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) The adsorption of various environmental gas molecules, including H-2, N-2, CO, CO2, O-2, NO, NO2, SO2 H2O, H2S, NH3 and CH4, on the surface of the recently synthesized two dimensional MoSi2N4 (MSN) monolayer has been investigated by means of spin-polarized first-principles calculations. The most stable adsorption configuration, adsorption energy, and charge transfer have been computed. Due to the weak interaction between molecules studied with the MSN monolayer surface, the adsorption energy is small and does not yield any significant distortion of the MSN lattice, i.e., the interaction between the molecules and MSN monolayer surface is physisorption. We find that all molecules are physisorbed on the MSM surface with small charge transfer, acting as either charge acceptors or donors. The MSN monolayer is a semiconductor with an indirect band gap of 1.79 eV. Our theoretical estimations reveal that upon adsorption of H-2, N-2, CO, CO2, NO, H2O, H2S, NH3 and CH4 molecules, the semiconducting character of MSN monolayer is preserved and the band gap value is decreased to similar to 1.5 eV. However, the electronic properties of the MSN monolayer can be significantly altered by adsorption of O-2, NO and SO2, and a spin polarization with magnetic moments of 2, 1, 2 mu(B), respectively, can be introduced. Furthermore, we demonstrate that the band gap and the magnetic moment of adsorbed MSN monolayer can be significantly modulated by the concentration of NO and SO2 molecules. As the concentration of NO2 molecule increases, the magnetic moment increase from 1 mu(B) to 2 and 3 mu(B). In the case of the SO2 molecule with increasing of concentration, the band gap decreases from 1.2 eV to 1.1 and 0.9 eV. Obviously, our theoretical studies indicate that MSN monolayer-based sensor has a high application potential for O-2, NO, NO2 and SO2 detection.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000675534500002 Publication Date 2021-06-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.387 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 3.387
  Call Number UA @ admin @ c:irua:180421 Serial 6970
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Bogaerts, A.
  Title Oxidation destabilizes toxic amyloid beta peptide aggregation Type A1 Journal article
  Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
  Volume 9 Issue 1 Pages 5476
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (up) The aggregation of insoluble amyloid beta (Aβ) peptides in the brain is known to trigger the onset of neurodegenerative diseases, such as Alzheimer’s disease. In spite of the massive number of investigations, the underlying mechanisms to destabilize the Aβ aggregates are still poorly understood. Some studies indicate the importance of oxidation to destabilize the Aβ aggregates. In particular, oxidation induced by cold atmospheric plasma (CAP) has demonstrated promising results in eliminating these toxic aggregates. In this paper, we investigate the effect of oxidation on the stability of an Aβ pentamer. By means of molecular dynamics simulations and umbrella sampling, we elucidate the conformational changes of Aβ pentamer in the presence of oxidized residues, and we estimate the dissociation free energy of the terminal peptide out of the pentamer form. The calculated dissociation free energy of the terminal peptide is also found to decrease with increasing oxidation. This indicates that Aβ pentamer aggregation becomes less favorable upon oxidation. Our study contributes to a better insight in one of the potential mechanisms for inhibition of toxic Aβ peptide aggregation, which is considered to be the main culprit to Alzheimer’s disease.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000462990000018 Publication Date 2019-04-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.259 Times cited 5 Open Access OpenAccess
  Notes M.Y. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), grant 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159367 Serial 5182
Permanent link to this record
 

 
Author Vingerhoets, R.; Spiller, M.; De Backer, J.; Adriaens, A.; Vlaeminck, S.E.; Meers, E.
  Title Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region Type A1 Journal article
  Year 2023 Publication Journal of cleaner production Abbreviated Journal
  Volume 410 Issue Pages 137278-13
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract (up) The agri-food value chain is a major cause of nitrogen (N) and phosphorus (P) emissions and associated environmental and health impacts. The EU's farm-to-fork strategy (F2F) demands an agri-food value chain approach to reduce nutrient emissions by 50% and fertilizer use by 20%. Substance flow analysis (SFA) is a method that can be applied to study complex systems such as the agri-food chain. A review of 60 SFA studies shows that they often lack detail by not sufficiently distinguishing between nodes, products and types of emissions. The present study aims to assess the added value of detail in SFAs and to illustrate that valuable indicators can be derived from detailed assessments. This aim will be attained by presenting a highly-detailed SFA for the livestock-intensive region of Flanders, Belgium. The SFA distinguishes 40 nodes and 1827 flows that are classified into eight different categories (e.g. by-products, point source emissions) following life cycle methods. Eight novel indicators were calculated, including indicators that assess the N and P recovery potential. Flanders has a low overall nutrient use efficiency (11% N, 18% P). About 55% of the N and 56% of the P embedded in recoverable streams are reused providing 35% and 37% of the total N and P input. Optimized nutrient recycling could replace 45% of N and 48% of P of the external nutrient input, exceeding the target set by the F2F strategy. Detailed accounting for N and P flows and nodes leads to the identification of more recoverable streams and larger N and P flows. More detailed flow accounting is a prerequisite for the quantification of technological intervention options. Future research should focus on including concentration and quality as a parameter in SFAs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000991013600001 Publication Date 2023-04-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.1 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715
  Call Number UA @ admin @ c:irua:196227 Serial 7770
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Vasilopoulos, P.; Peeters, F.M.
  Title Aharonov-Bohm oscillations in phosphorene quantum rings Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 95 Issue 20 Pages 205426
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) The Aharonov-Bohm (AB) effect in square phosphorene quantum rings, with armchair and zigzag edges, is investigated using the tight-binding method. The energy spectra and wave functions of such rings, obtained as a function of the magnetic flux Phi threading the ring, are strongly influenced by the ringwidthW, an in-plane electric field E-p, and a side-gating potential V-g. Compared to a square dot, the ring shows an enhanced confinement due to its inner edges and an interedge coupling along the zigzag direction, both of which strongly affect the energy spectrum and the wave functions. The energy spectrum that is gapped consists of a regular part, of conduction (valence) band states, that shows the usual AB oscillations in the higher-(lower-) energy region, and of edge states, in the gap, that exhibit no AB oscillations. As the width W decreases, the AB oscillations become more distinct and regular and their period is close to Phi(0)/2, where the flux quantum Phi(0) = h/e is the period of an ideal circular ring (W -> 0). Both the electric field E-p and the side-gating potential V-g reduce the amplitude of the AB oscillations. The amplitude can be effectively tuned by E-p or V-g and exhibits an anisotropic behavior for different field directions or side-gating configurations.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000402003700010 Publication Date 2017-05-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 16 Open Access
  Notes ; This work was financially supported by the Chinese Academy of Sciences, the Flemish Science Foundation (FWO-V1), and by the Canadian NSERC Grant No. OGP0121756 (P.V.). ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:144267 Serial 4638
Permanent link to this record
 

 
Author Piñera, I.; Abreu, Y.; van Espen, P.; Diaz, A.; Leyva, A.; Cruz, C.M.
  Title Radiation damage evaluation on LYSO and LuYAP materials through Dpa calculation assisted by Monte Carlo method Type P1 Proceeding
  Year 2011 Publication IEEE conference record T2 – IEEE Nuclear Science Symposium/Medical Imaging Conference (NSS/MIC)/18th, International Workshop on Room-Temperature Semiconductor X-Ray and, Gamma-Ray Detectors, OCT 23-29, 2011, Valencia, SPAIN Abbreviated Journal
  Volume Issue Pages 1609-1611
  Keywords P1 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract (up) The aim of the present work is to study the radiation damage induced in LYSO and LuYAP crystals by the gamma radiation and the secondary electrons/positrons generated. The displacements per atom (dpa) distributions inside each material were calculated following the Monte Carlo assisted Classical Method (MCCM) introduced by the authors. As gamma sources were used Sc-44, Na-22 and V-48. Also the energy of gammas from the annihilation processes (511 keV) was included in the study. This procedure allowed studying the in-depth dpa distributions inside each crystal for all four sources. It was also possible to obtain the separate contribution from each atom to the total dpa. The LYSO crystals were found to receive more damage, mainly provoked by the displacements of silicon and oxygen atoms.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000304755601169 Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-1-4673-0120-6 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:113072 Serial 8447
Permanent link to this record
 

 
Author Bouvier, S.; Benmhenni, N.; Tirry, W.; Gregory, F.; Nixon, M.E.; Cazacu, O.; Rabet, L.
  Title Hardening in relation with microstructure evolution of high purity \alpha-titanium deformed under monotonic and cyclic simple shear loadings at room temperature Type A1 Journal article
  Year 2012 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
  Volume 535 Issue Pages 12-21
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (up) The aim of this paper is to gain understanding of the quasi-static, large strain deformation behavior at room-temperature of high-purity alpha-Ti with an initial split-basal texture. Simple shear tests were conducted along different directions in order to quantify the material's anisotropy and hardening evolution for different strain paths such as monotonic, Bauschinger, and cyclic loadings. The stress-strain curves indicate that the material displays strong anisotropy in the flow behavior. In order to capture the link between microstructure evolution (occurrence of twinning, grain size evolution, etc.) and the macroscopic response, a thoroughly detailed multi-scale characterization using scanning electron microscope (SEM) observations and electron backscattered diffraction (EBSD) analysis was also conducted. Specifically, EBSD analyses indicate that the twin activity and grain fragmentation are responsible for the observed difference between the macroscopic hardening rates corresponding to different directions and loading paths. (C) 2011 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000301402400003 Publication Date 2011-12-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.094 Times cited 22 Open Access
  Notes Approved Most recent IF: 3.094; 2012 IF: 2.108
  Call Number UA @ lucian @ c:irua:97824 Serial 1410
Permanent link to this record
 

 
Author Tirry, W.; Bouvier, S.; Benmhenni, N.; Hammami, W.; Habraken, A.M.; Coghe, F.; Schryvers, D.; Rabet, L.
  Title Twinning in pure Ti subjected to monotonic simple shear deformation Type A1 Journal article
  Year 2012 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 72 Issue Pages 24-36
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (up) The aim of this paper is to provide a thorough study on the occurrence and importance of deformation twinning in simple shear deformed pure α-Ti. A statistically relevant inspection of the morphology of the deformation twins in relation to the applied strain/deformation is performed. The investigated microstructural aspects are the twin volume fraction, the twin thickness distribution and the resolved shear stress distribution on the twin plane. All these aspects are examined as a function of the twin types and two initial textures. Monotonic simple shear experiments are carried out for three different loading directions with respect to a direction linked to the initial crystallographic texture. EBSD and TEM observations reveal the presence of View the MathML source and View the MathML source twins. The statistical analysis reveals that View the MathML source and View the MathML source twins have a similar average thickness around 1.9 nm, but the View the MathML source twins show a far larger spread on their thickness and can grow to almost the size of the original parent grain. Correlation of the twin fractions with the RSS analysis shows that RSS is an acceptable method explaining the difference in twin fractions for different textures and orientations. A detailed analysis shows that View the MathML source twins occur in average with a smaller volume fraction but with a higher RSS, indicating they are more difficult to nucleate or grow compared to View the MathML source twinning. In general a higher RSS value on the twin plane is not connected to a higher twin thickness; only in the case of View the MathML source twins the highest RSS values show clearly thicker twins.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos 000309086700004 Publication Date 2012-07-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.714 Times cited 25 Open Access
  Notes Iap Approved Most recent IF: 2.714; 2012 IF: 1.880
  Call Number UA @ lucian @ c:irua:101225 Serial 3768
Permanent link to this record
 

 
Author Cagnetta, C.; Coma, M.; Vlaeminck, S.E.; Rabaey, K.
  Title Production of carboxylates from high rate activated sludge through fermentation Type A1 Journal article
  Year 2016 Publication Bioresource technology Abbreviated Journal
  Volume 217 Issue Pages 165-172
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract (up) The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141 mg C g−1 VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35 °C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000380226300023 Publication Date 2016-03-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:139912 Serial 8421
Permanent link to this record
 

 
Author Cunha, S.M.; da Costa, D.R.; Pereira, J.M., Jr.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M.
  Title Tunneling properties in α-T₃ lattices : effects of symmetry-breaking terms Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 105 Issue 16 Pages 165402-165414
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) The alpha-T3 lattice model interpolates a honeycomb (graphene-like) lattice and a T3 (also known as dice) lattice via the parameter alpha. These lattices are made up of three atoms per unit cell. This gives rise to an additional dispersionless flat band touching the conduction and valence bands. Electrons in this model are analogous to Dirac fermions with an enlarged pseudospin, which provides unusual tunneling features like omnidirectional Klein tunneling, also called super-Klein tunneling (SKT). However, it is unknown how small deviations in the equivalence between the atomic sites, i.e., variations in the alpha parameter, and the number of tunnel barriers changes the transmission properties. Moreover, it is interesting to learn how tunneling occurs through regions where the energy spectrum changes from linear with a middle flat band to a hyperbolic dispersion. In this paper we investigate these properties, its dependence on the number of square barriers and the alpha parameter for either gapped and gapless cases. Furthermore, we compare these results to the case where electrons tunnel from a region with linear dispersion to a region with a bandgap. In the latter case, contrary to tunneling through a potential barrier, the SKT is no longer observed. Finally, we find specific cases where transmission is allowed due to a symmetry breaking of sublattice equivalence.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000805195200001 Publication Date 2022-04-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.7
  Call Number UA @ admin @ c:irua:188614 Serial 7222
Permanent link to this record
 

 
Author Kuppens, T.; Van Dael, M.; Maggen, J.; Vanreppelen, K.; Yperman, J.; Carleer, R.; Elen, H.; Van Passel, S.
  Title Techno-economic assessment of different conversion pathways for pyrolysis char from pig manure Type P1 Proceeding
  Year 2014 Publication Abbreviated Journal
  Volume Issue Pages 901-911
  Keywords P1 Proceeding; Engineering sciences. Technology
  Abstract (up) The amount of animal manure that can be brought back to agricultural land is limited by legislation. Because pig manure is available in too large quantities in some areas, we investigate the techno-economic feasibility of converting it into valuable products. First, slurry is separated in water, a thick fraction and a fertilizer concentrate poor in phosphate. Then, the thick fraction is dried and pyrolyzed. Our goal is to identify the optimal pyrolysis and activation conditions for the production of biochar or activated carbon. The latter has interesting adsorption characteristics due to the presence of nitrogen. It can also be used as a soil amendment as it improves biomass quantity and quality. On top, it immobilizes toxic elements and stores carbon in the soil. Char thus has many interesting characteristics and can be valued in different ways. The economic feasibility has been explored by a first techno-economic modelling iteration. The critical factors influencing the feasibility are identified by Monte Carlo simulations for further improvement of the process design.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title 22nd European Biomass Conference and Exhibition : Setting the Course for a Biobased Economy, 23-26 June 2014, Hamburg, Germany : conference proceedings
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes ; ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:127546 Serial 6263
Permanent link to this record
 

 
Author Kalitzova, M.; Vlakhov, E.; Marinov, Y.; Gesheva, K.; Ignatova, V.A.; Lebedev, O.; Muntele, C.; Gijbels, R.
  Title Effect of high-frequency electromagnetic field on Te+-implanted (001) Si</tex> Type A1 Journal article
  Year 2004 Publication Vacuum: the international journal and abstracting service for vacuum science and technology Abbreviated Journal Vacuum
  Volume 76 Issue 2-3 Pages 325-328
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (up) The analysis of high-frequency electromagnetic field (HFEMF) effects on the microstructure and electrical properties of Te+ implanted (0 0 1) Si is reported. Cross-sectional high-resolution transmission electron microscopy (XHRTEM) demonstrates the formation of Te nanoclusters (NCs) embedded in the Si layer amorphized by implantation (a-Si) at fluences greater than or equal to 1 x 10(16) cm(-2). Post-implantation treatment with 0.45 MHz HFEMF leads to enlargement of Te NCs, their diffusion and accumulation at the a-Si surface and formation of laterally connected extended tellurium structures above the percolation threshold, appearing at an ion fluence of 1 x 10(17) cm(-2). AC electrical conductivity measurements show nearly four orders of magnitude decrease of impedance resistivity in this case, which is in good agreement with the results of our structural studies. The results obtained are discussed in terms of the two-phase isotropic spinodal structure. (C) 2004 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000224890100048 Publication Date 2004-08-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0042-207X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.53 Times cited 2 Open Access
  Notes Approved Most recent IF: 1.53; 2004 IF: 0.902
  Call Number UA @ lucian @ c:irua:95105 Serial 814
Permanent link to this record
 

 
Author Yang, W.; Nelissen, K.; Kong, M.H.; Li, Y.T.; Tian, Y.M.
  Title Melting properties of two-dimensional multi-species colloidal systems in a parabolic trap Type A1 Journal article
  Year 2011 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
  Volume 83 Issue 4 Pages 499-505
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) The angular and radial melting properties of two-dimensional classical systems consisting of different types of particles confined in a parabolic trap are studied through modified Monte Carlo simulations. A universal behavior of the angular melting process is found, which occurs in multiple steps due to shell depended melting temperatures. The melting sequence of the different shells is determined by two major factors: (1) the confinement strength which each shell is subjected to, and (2) the specific structure of each shell. Further, a continuous radial disordering of the particle types forming a single circular shell is found and analyzed. This phenomenon has never been observed before in two-dimensional mono-dispersive systems. This continuous radial disordering results from the high energy barrier between different particle types in multi-species systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos 000296633700013 Publication Date 2011-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.461 Times cited 2 Open Access
  Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. 11047111, the Major State Basic Research Development Program of China (973) under Grant No. 2009CB724201, the Key Science and Technology Program of Shanxi Province of China under Grant No. 20090321085, the Doctors' Initial Foundation of Taiyuan University of Science and Technology under Grant No. 20092010, the Youth Foundation of Taiyuan University of Science and Technology under Grant No. 20113020, the FWO-Vl (Belgium) and CNPq (Brazil). Part of the calculations were carried out using the CalcUA core facility of Universiteit Antwerpen (Belgium), a division of Flemish Supercomputer Center VSC, and in the Center for Computational Science of CASHIPS (China). ; Approved Most recent IF: 1.461; 2011 IF: 1.534
  Call Number UA @ lucian @ c:irua:93589 Serial 1989
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: