toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wang, C.; Ke, X.; Wang, J.; Liang, R.; Luo, Z.; Tian, Y.; Yi, D.; Zhang, Q.; Wang, J.; Han, X.-F.; Van Tendeloo, G.; Chen, L.-Q.; Nan, C.-W.; Ramesh, R.; Zhang, J. url  doi
openurl 
  Title Ferroelastic switching in a layered-perovskite thin film Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue 7 Pages 10636  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi2WO6 thin films, where the ferroelectric polarization rotates by 90 degrees within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi2WO6 film is ten times lower than the one in PbTiO3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications.  
  Address Department of Physics, Beijing Normal University, 100875 Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000371020600002 Publication Date 2016-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 40 Open Access  
  Notes The work in Beijing Normal University is supported by the NSFC under contract numbers 51322207, 51332001 and 11274045. J.Z. also acknowledges the support from National Basic Research Program of China, under contract No. 2014CB920902. G.V.T. acknowledges the funding from the European Research Council under the Seventh Framework Program (FP7), ERC Advanced Grant No. 246791-COUNTATOMS. X.K. acknowledges the funding from NSFC (Grant No.11404016) and Beijing University of Technology (2015-RD-QB-19). J.W. acknowledges the funding from NSFC (Grant number 51472140). L.-Q.C. acknowledges the supporting by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award FG02-07ER46417. R.L. acknowledges Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation. Z.L. acknowledges the support from the NSFC (No.11374010 and No.11434009). Q.Z. and X.-F.H. acknowledge the funding support from NSFC (Grant No. 11434014). R.R. acknowledges support from the National Science Foundation (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems) under grant number EEC-1160504. Approved Most recent IF: 12.124  
  Call Number c:irua:130978 Serial 4007  
Permanent link to this record
 

 
Author Delamare, M.P.; Hervieu, M.; Wang, J.; Provost, J.; Monot, I.; Verbist, K.; Van Tendeloo, G. pdf  doi
openurl 
  Title Combination of CeO2 and PtO2 doping for the strong enhancement of Jc under magnetic field in melt-textured superconductor YBaCuO Type A1 Journal article
  Year 1996 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 262 Issue 3/4 Pages 220-226  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A combination of CeO2 and PtO2 doping has been studied in melt-processed YBa2Cu3O7-x. This study was carried out using an optimized well established MTG process. The cerium-platinum doped samples exhibit a high fishtail effect with a J(c) of 4.3 x 10(4) A/cm(2) under an applied field of 1 T. Microstructural and nanostructural studies have been performed. The 211 and BaCeO3 inclusions are a few micrometers wide and the formation of a metastable nanocrystalline phase (Y4Ba4)Cu-8-x(Ce,Pt)(x)O-20+delta related to the perovskite is detected. The 123 grains show no specific extended defect generated by the doping process. The relationship between structure and properties are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996UV45000011 Publication Date 2003-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.942 Times cited 27 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15467 Serial 397  
Permanent link to this record
 

 
Author Monot, I.; Verbist, K.; Hervieu, M.; Laffez, P.; Delamare, M.P.; Wang, J.; Desgardin, G.; Van Tendeloo, G. openurl 
  Title Microstructure and flux pinning properties of melt textured grown doped YBa2Cu3O7-\delta Type A1 Journal article
  Year 1997 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 274 Issue Pages 253-266  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1997WJ46100010 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 33 Open Access  
  Notes Approved Most recent IF: 1.404; 1997 IF: 2.199  
  Call Number UA @ lucian @ c:irua:21427 Serial 2050  
Permanent link to this record
 

 
Author Mi, Y.; Zhang, X.; Yang, Z.; Li, Y.; Zhou, S.; Zhang, H.; Zhu, W.; He, D.; Wang, J.; Van Tendeloo, G. doi  openurl
  Title Shape selective growth of single crystalline MnOOH multipods and 1D nanowires by a reductive hydrothermal method Type A1 Journal article
  Year 2007 Publication Materials letters Abbreviated Journal Mater Lett  
  Volume 61 Issue 8/9 Pages 1781-1784  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000245476900043 Publication Date 2006-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-577X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.572 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.572; 2007 IF: 1.625  
  Call Number UA @ lucian @ c:irua:64275 Serial 2991  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: