|   | 
Details
   web
Records
Author Shanenko, A.A.; Aguiar, J.A.; Vagov, A.; Croitoru, M.D.; Milošević, M.V.
Title Atomically flat superconducting nanofilms: multiband properties and mean-field theory Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 054001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Perot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353015700005 Publication Date 2015-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 23 Open Access
Notes This work was supported by the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). AAS acknowledges fruitful discussions with A Perali and D Neilson during his stay in the University of Camerino and is thankful for partial support of his visit by the University of Camerino under the project FAR 'Control and enhancement of superconductivity by engineering materials at the nanoscale'. MDC acknowledges the support from the Back to Belgium Grant of the federal Science Policy (BELSPO). Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:132501 Serial 3944
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Superconductivity in the quantum-size regime Type P1 Proceeding
Year 2008 Publication Abbreviated Journal
Volume Issue Pages 79-103
Keywords P1 Proceeding; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract (up) Recent technological advances resulted in high-quality superconducting metallic nanofilms and nanowires. The physical properties of such nanostructures are governed by the size-quantization of the transverse electron spectrum. This has a substantial impact on the basic superconducting characteristics, e.g., the order parameter, the critical temperature and the critical magnetic field. In the present paper we give an overview of our theoretical results on this subject. Based on a numerical self-consistent solution of the Bogoliubov-de Gennes equations, we investigate how the superconducting properties are modified in the quantum-size regime.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4020-9144-5 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:75944 Serial 3374
Permanent link to this record
 

 
Author Shanenko, A.A.; Orlova, N.V.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Nanofilms as quantum-engineered multiband superconductors : the Ginzburg-Landau theory Type A1 Journal article
Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 102 Issue 2 Pages 27003-27006
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Recently fabricated single-crystalline atomically flat metallic nanofilms are in fact quantum-engineered multiband superconductors. Here the multiband structure is dictated by the nanofilm thickness through the size quantization of the electron motion perpendicular to the nanofilm. This opens the unique possibility to explore superconductivity in well-controlled multi-band systems. However, a serious obstacle is the absence of a convenient and manageable theoretical tool to access new physical phenomena in such quasi-two-dimensional systems, including interplay of quantum confinement and fluctuations. Here we cover this gap and construct the appropriate multiband Ginzburg-Landau functional for nano-thin superconductors. Copyright (C) EPLA, 2013
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000319617700019 Publication Date 2013-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 8 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2013 IF: 2.269
Call Number UA @ lucian @ c:irua:109859 Serial 2257
Permanent link to this record
 

 
Author Chen, Y.; Hong-Yu, W.; Peeters, F.M.; Shanenko, A.A.
Title Quantum-size effects and thermal response of anti-Kramer-Pesch vortex core Type A1 Journal article
Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 27 Issue 27 Pages 125701
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Since the 1960's it has been well known that the basic superconductive quantities can exhibit oscillations as functions of the thickness (diameter) in superconducting nanofilms (nanowires) due to the size quantization of the electronic spectrum. However, very little is known about the effects of quantum confinement on the microscopic properties of vortices. Based on a numerical solution to the Bogoliubov-de Gennes equations, we study the quantum-size oscillations of the vortex core resulting from the sequential interchange of the Kramer-Pesch and anti-Kramer-Pesch regimes with changing nanocylinder radius. The physics behind the anti-Kramer-Pesch anomaly is displayed by utilizing a semi-analytical Anderson approximate solution. We also demonstrate that the anti-Kramer-Pesch vortex core is robust against thermal smearing and results in a distinctive two-maxima structure in the local density of states, which can be used to identify the existence of the anti-Kramer-Pesch vortex.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000351294700018 Publication Date 2015-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 4 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. NSFC-11304134, the Flemish Science Foundation (FWO-Vl), and the Methusalem program. AAS acknowledges the support of the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). WHY acknowledges the support of Scientific Research Fund of Zhejiang Provincial Education Department (Y201120994). ; Approved Most recent IF: 2.649; 2015 IF: 2.346
Call Number c:irua:125460 Serial 2787
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M.
Title Ultra-small metallic grains : effect of statistical fluctuations of the chemical potential on superconducting correlations and vice versa Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 27 Pages 275701
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Superconducting correlations in an isolated metallic grain are governed by the interplay between two energy scales: the mean level spacing delta and the bulk pairing gap Delta(0), which are strongly influenced by the position of the chemical potential with respect to the closest single-electron level. In turn superconducting correlations affect the position of the chemical potential. Within the parity projected BCS model we investigate the probability distribution of the chemical potential in a superconducting grain with randomly distributed single-electron levels. Taking into account statistical fluctuations of the chemical potential due to the pairing interaction, we find that such fluctuations have a significant impact on the critical level spacing delta(c) at which the superconducting correlations cease: the critical ratio delta(c)/Delta(0) at which superconductivity disappears is found to be increased.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000305653100012 Publication Date 2012-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 9 Open Access
Notes ; This work was supported by the European Community under the Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF network INSTANS. MDC and AAS are grateful to A Vagov for stimulating discussions. ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:100280 Serial 3793
Permanent link to this record
 

 
Author da Silva, R.M.; Milošević, M.V.; Shanenko, A.A.; Peeters, F.M.; Albino Aguiar, J.
Title Giant paramagnetic Meissner effect in multiband superconductors Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 12695
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (up) Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors paramagnetic response can be observed even in slab geometries, and can be far larger than any previous estimate – even multiply larger than the diamagnetic Meissner response for the same applied magnetic field. We link the appearance of this giant paramagnetic response to the broad crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices interact non-monotonically and multibody effects become important, causing unique flux configurations and their locking in the presence of surfaces.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000359143700001 Publication Date 2015-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 25 Open Access
Notes ; This work was supported by the Brazilian science agencies CAPES (PNPD 223038.003145/2011-00), CNPq (307552/2012-8, 141911/2012-3, and APV-4 02937/ 2013-9), and FACEPE (APQ-0202-1.05/10 and BCT-0278-1.05/11), the Flemish Science Foundation (FWO-Vl), and by the CNPq-FWO cooperation programme (CNPq 490297/2009-9). R.M.S. acknowledges support from the SRS PhD+ program of the University Cooperation for Development of the Flemish Interuniversity Council (VLIR-UOS). M.V.M. acknowledges support from CNPq (APV-4 02937/2013-9), FACEPE (APV-0034-1.05/14), and CAPES (BEX1392/11-5). ; Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number c:irua:127212 Serial 1339
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M.
Title Giant drop in the Bardeen-Cooper-Schrieffer coherence length induced by quantum size effects in superconducting nanowires Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 10 Pages 104524-104524,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The BCS coherence length in low-dimensional superconductors is dramatically modified by quantum-size effects. In particular, for nanowires made of conventional superconducting materials, we show that the longitudinal zero-temperature coherence length exhibits width-dependent drops by 23 orders of magnitude each time when the bottom of one of single-electron subbands formed due to the transverse quantization of electron motion is situated in a close vicinity to the Fermi level. This phenomenon has strong similarities to the well-known BCS-BEC (Bose-Einstein condensation) crossover in ultracold fermionic condensates but with an important exception: it is driven by the transverse quantization of the electron motion rather than by the externally controlled strength of the fermion-fermion interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282269600005 Publication Date 2010-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-network: INSTANS. M. D. C. acknowledges support from the Alexander von Humboldt Foundation. A. A. S. thanks R. G. Mints, W. V. Pogosov, D. Y. Vodolazov, A. Perali, and A. Bianconi for fruitful discussions. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85419 Serial 1337
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Quantum cascades in nano-engineered superconductors : geometrical, thermal and paramagnetic effects Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 26 Pages 265702
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The effect of a parallel magnetic field on the orbital motion of electrons in high-quality superconducting nanowires resulting in a superconductor-to-normal transition which occurs through a cascade of jumps in the order parameter as a function of the magnetic field. Such cascades originate from the transverse size quantization that splits the conduction band into a series of subbands. Here, based on a numerical solution of the Bogoliubov-de Gennes equations for a hollow nanocylinder, we investigate how the quantum-size cascades depend on the confining geometry, i.e., by changing the cylinder radius R and its thickness d we cover the range from the nanowire-like to the nanofilm-like regime. The cascades are shown to become much less pronounced when increasing R/d, i.e., when the nanofilm-like regime is approached. When the temperature is non-zero they are thermally smoothed. This includes the spin-magnetic-field interaction which reduces the critical (depairing) parallel magnetic field H-c,H-parallel to but does not have any qualitative effect on the quantum cascades. From our calculations it is seen that the paramagnetic limiting field H-par significantly exceeds H-c,H-parallel to even in extremely narrow nanocylinders, i.e., when R, d are down to a few nanometers, and H-c,H-parallel to is only about 10% larger when switching-off the spin-magnetic-field interaction in this case. Both characteristic fields, H-c,H-parallel to and H-par, exhibit pronounced quantum-size oscillations. We demonstrate that the quantum cascades and the quantum-size oscillations survive in the presence of surface roughness.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000305640800014 Publication Date 2012-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 6 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the ESF-AQDJJ network. MDC acknowledges the support of the EU Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:100281 Serial 2773
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Mints, R.G.; Peeters, F.M.
Title Andreev-type states induced by quantum confinement Type A1 Journal article
Year 2008 Publication Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Abbreviated Journal J Surf Investig-X-Ra
Volume 2 Issue 4 Pages 611-615
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract (up) The properties of a clean superconductor with nanoscale dimensions are governed by quantum confinement of the electrons. This results in a spatially inhomogeneous superconducting condensate and in the formation of new Andreev-type quasiparticle states. These states are mainly located beyond regions where the superconducting condensate is enhanced. A numerical self-consistent solution of the Bogoliubov-de Gennes equations for a cylindrical metallic nanowire shows that these new Andreev-type states decrease the ratio of the energy gap to the critical temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000262864600021 Publication Date 2008-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1027-4510;1819-7094; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:75991 Serial 113
Permanent link to this record
 

 
Author Shanenko, A.A.; Ivanov, V.A.
Title Effects of confining interaction in meso-superconductors Type A1 Journal article
Year 2004 Publication Physics letters : A Abbreviated Journal Phys Lett A
Volume 322 Issue 5-6 Pages 384-389
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) This Letter presents a generalized Ginzburg-Landau equation for the superconducting order parameter which includes the terms resulting from the confining interaction associated with the specimen boundary. While the original Ginzburg-Landau theory had been developed for a bulk superconductor, this generalization is meant for study of a meso-superconductor. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000220123600018 Publication Date 2004-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.772 Times cited 1 Open Access
Notes Approved Most recent IF: 1.772; 2004 IF: 1.454
Call Number UA @ lucian @ c:irua:103244 Serial 859
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting transition temperature of Pb nanofilms : impact of thickness-dependent oscillations of the phonon-mediated electron-electron coupling Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 22 Pages 224517-224517,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) To date, several experimental groups reported measurements of the thickness dependence of T-c of atomically uniform single-crystalline Pb nanofilms. The reported amplitude of the T-c oscillations varies significantly from one experiment to another. Here we propose that the reason for this unresolved issue is an interplay of the quantum-size variations in the single-electron density of states with thickness-dependent oscillations in the phonon-mediated electron-electron coupling. Such oscillations in the coupling depend on the substrate material, the quality of the interface, the protection cover, and other details of the fabrication process, changing from one experiment to another. This explains why the available data do not exhibit one-voice consistency about the amplitude of the T-c oscillations. Our analyses are based on a numerical solution of the Bogoliubov-de Gennes equations for a superconducting slab.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305251300006 Publication Date 2012-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 24 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:99076 Serial 3368
Permanent link to this record
 

 
Author Komendová, L.; Milošević, M.V.; Shanenko, A.A.; Peeters, F.M.
Title Different length scales for order parameters in two-gap superconductors : extended Ginzburg-Landau theory Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 6 Pages 064522-064522,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Using the Ginzburg-Landau theory extended to the next-to-leading order, we determine numerically the healing lengths of the two order parameters at the two-gap superconductor/normal metal interface. We demonstrate on several examples that those can be different even in the strict domain of applicability of the Ginzburg-Landau theory. This justifies the use of this theory to describe relevant physics of two-gap superconductors, distinguishing them from their single-gap counterparts. The calculational degree of complexity increases only slightly with respect to the conventional Ginzburg-Landau expansion, thus the extended Ginzburg-Landau model remains numerically far less demanding compared to the full microscopic approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000294226000013 Publication Date 2011-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 56 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:92414 Serial 695
Permanent link to this record
 

 
Author Vargas Paredes, A.A.; Shanenko, A.A.; Vagov, A.; Milošević, M.V.; Perali, A.
Title Crossband versus intraband pairing in superconductors: signatures and consequences of the interplay Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 9 Pages 094516-94517
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We analyze the paradigmatic competition between intraband and crossband Cooper-pair formation in twoband superconductors, neglected in most works to date. We derive the phase-sensitive gap equations and describe the crossover between the intraband-dominated and the crossband-dominated regimes, delimited by a “gapless” state. Experimental signatures of crosspairing comprise notable gap splitting in the excitation spectrum, non-BCS behavior of gaps versus temperature, as well as changes in the pairing symmetry as a function of temperature. The consequences of these findings are illustrated on the examples of MgB2 and Ba0.6K0.4Fe2As2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000522074900002 Publication Date 2020-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 14 Open Access
Notes ; This collaborative work was fostered within the international Multi Super network on Multi-condensate Superconductivity and Superfluidity [70]. The authors thank Andrea Guidini for his help during the initial stage of this work and Laura Fanfarillo for useful discussions. This work was partially supported by the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001) and the Research Foundation -Flanders (FWO). A.A.V.-P. acknowledges support by the joint doctoral program and by the Erasmus+ exchange between the University of Antwerp and the University of Camerino. M.V.M. gratefully acknowledges support from a Visiting Professorship at the University of Camerino. A.S. and A.V. acknowledge support from the CAPES/Print Grant, Process No. 88887.333666/ 2019-00 (Brazil) and the Russian Science Foundation Project No. 18-12-00429, respectively. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:168605 Serial 6479
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Two-band superconductors : extended Ginzburg-Landau formalism by a systematic expansion in small deviation from the critical temperature Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 14 Pages 144514
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We derive the extended Ginzburg-Landau (GL) formalism for a clean s-wave two-band superconductor by employing a systematic expansion of the free-energy functional and the corresponding matrix gap equation in powers of the small deviation from the critical temperature tau = 1 – T/T-c. The two lowest orders of this expansion produce the equation for T-c and the standard GL theory. It is shown that in agreement with previous studies, this two-band GL theory maps onto the single-band GL model and thus fails to describe the difference in the spatial profiles of the two-band condensates. We prove that this difference appears already in the leading correction to the standard GL theory, which constitutes the extended GL formalism. We derive linear differential equations that determine the leading corrections to the band order parameters and magnetic field, discuss the validity of these equations, and consider examples of an important interplay between the band condensates. Finally, we present numerical results for the thermodynamic critical magnetic field and temperature-dependent band gaps for recent materials of interest, which are in very good agreement with those obtained from the full BCS approach in a wide temperature range. To this end, we emphasize the advantages of our extended GL theory in comparison with the often used two-component GL-like model based on an unreconstructed two-band generalization of the Gor'kov derivation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309776800001 Publication Date 2012-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 44 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Authors are indebted to Y. Singh and R. Prozorov for discussions and for providing recent experimental data. A. V. is grateful to W. Pesch for stimulating discussions and critical comments on this work. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101798 Serial 3769
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Vasenko, A.S.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Influence of disorder on superconducting correlations in nanoparticles Type A1 Journal article
Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 29 Issue 29 Pages 605-609
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We investigate how the interplay of quantum confinement and level broadening caused by disorder affects superconducting correlations in ultra-small metallic grains. We use the electron-phonon interaction-induced electron mass renormalization and the reduced static-path approximation of the BCS formalism to calculate the critical temperature as a function of the grain size. We show how the strong electron-impurity scattering additionally smears the peak structure in the electronic density of states of a metallic grain and imposes additional limits on the critical temperature under strong quantum confinement.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000371089500013 Publication Date 2016-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.18 Times cited 7 Open Access
Notes ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO-Vl. ; Approved Most recent IF: 1.18
Call Number UA @ lucian @ c:irua:132286 Serial 4195
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.; Axt, V.M.
Title Parity-fluctuation induced enlargement of the ratio \DeltaE/kBTc in metallic grains Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 21 Pages 214518-214518,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We investigate how the interplay of quantum confinement and particle number-parity fluctuations affects superconducting correlations in ultra-small metallic grains. Using the number-parity projected BCS formalism we calculate the critical temperature and the excitation gap as a function of the grain size for grains with even and odd number of confined carriers. We show that the experimentally observed anomalous increase of the coupling ratio ΔE/kBTc with decreasing superconducting grain size can be attributed to an enhancement of the number-parity fluctuations in ultra-small grains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298114100003 Publication Date 2011-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flamish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). M. D. C. thanks A. S. Mel'nikov and N. B. Kopnin for fruitful discussions. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94373 Serial 2555
Permanent link to this record
 

 
Author Vagov, A.; Schomerus, H.; Shanenko, A.
Title Generalized Galitskii approach for the vertex function of a Fermi gas with resonant interaction Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue 21 Pages 214513-214517
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We present a generalized Galitskii approach for the Bethe-Salpeter equation for the two-particle vertex function of a Fermi system with the resonant interaction by accounting for the resonant state in the scattering potential and utilizing the universal form of the resonant scattering amplitude. The procedure can be carried out both for the normal as well as for the condensate state. In both cases, the vertex function in the vicinity of the resonance is shown to formally coincide with that obtained for a weakly attractive Fermi gas. Thus we justify the popular calculational framework in which results for the weakly attractive Fermi gas are formally extrapolated into the domain of strong coupling, and further to the repulsive side of the resonance, where molecular states are formed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000251986100097 Publication Date 2007-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:104037 Serial 1324
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M.
Title Superconducting nanowires : new type of BCS-BEC crossover driven by quantum-size effects Type P1 Proceeding
Year 2011 Publication Abbreviated Journal
Volume Issue Pages 119-127
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract (up) We show that a superconducting quantum nanowire undergoes a new type of BCS-BEC crossover each time when an electron subband approaches the Fermi surface. In this case the longitudinal Cooper-pair size drops by two-three orders of magnitude down to a few nanometers. This unconventional BCS-BEC crossover is driven by quantum-size effects rather than by tuning the fermion-fermion interaction.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos 000289872900009 Publication Date 2010-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1874-6500;1874-6535; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the ESF-network: INSTANS. M.D.C. acknowledges support from the Alexander von Humboldt Foundation. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:89946 Serial 3359
Permanent link to this record
 

 
Author Komendová, L.; Chen, Y.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title Two-band superconductors : hidden criticality deep in the superconducting state Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 108 Issue 20 Pages 207002-207002,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We show that two-band superconductors harbor hidden criticality deep in the superconducting state, stemming from the critical temperature of the weaker band taken as an independent system. For sufficiently small interband coupling gamma the coherence length of the weaker band exhibits a remarkable deviation from the conventional monotonic increase with temperature, namely, a pronounced peak close to the hidden critical point. The magnitude of the peak scales as proportional to gamma(-mu), with the Landau critical exponent mu = 1/3, the same as found for the mean-field critical behavior with respect to the source field in ferromagnets and ferroelectrics. Here reported hidden criticality of multiband superconductors can be experimentally observed by, e.g., imaging of the variations of the vortex core in a broader temperature range. Similar effects are expected for the superconducting multilayers.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000304064000017 Publication Date 2012-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 75 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Useful discussions with A. V. Vagov are acknowledged. ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:98945 Serial 3770
Permanent link to this record
 

 
Author Croitoru, M.D.; Zachmann, M.; Vagov, A.; Axt, V.M.; Shanenko, A.A.; Kettmann, P.; Papenkort, T.; Kuhn, T.
Title Coherent dynamics of confinement-induced multiband superconductors Type A1 Journal article
Year 2014 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 503 Issue Pages 183-186
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We study the coherent dynamics of pairing in a nanoscale superconductor, that is intrinsically multiband, after an external perturbation in the non-adiabatic regime. The description of the dynamics of the pairing order is within the density-matrix approach based on the BCS model and the Bogoliubov-de Gennes equations. We find that for certain resonant wire widths the superconducting order parameter exhibits two oscillatory frequencies which are determined by the long-time asymptotic values of the subgaps. This in turn leads to a pronounced beating phenomenon. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000340070600040 Publication Date 2014-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 1 Open Access
Notes ; M.D.C. acknowledges the support from the Back to Belgium Grant of the federal Science Policy (BELSPO). ; Approved Most recent IF: 1.404; 2014 IF: 0.942
Call Number UA @ lucian @ c:irua:118745 Serial 378
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting nanowires: quantum-confinement effect on the critical magnetic field and supercurrent Type A1 Journal article
Year 2009 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 32nd International Workshop on Condensed Matter Theories, Aug 12-19, 2008, Loughborough Univ, Loughborough, England Abbreviated Journal Int J Mod Phys B
Volume 23 Issue 20-21 Pages 4257-4268
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract (up) We study the effect of electron confinement on the superconducting-to-normal phase transition driven by a magnetic field and/or on the current-carrying state of the superconducting condensate in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We show that in a parallel magnetic field and/or in the presence of supercurrent the transition from superconducting to normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magnetic field exhibits quantum-size oscillations with pronounced resonant enhancements.
Address
Corporate Author Thesis
Publisher World scientific Place of Publication Singapore Editor
Language Wos 000274525500026 Publication Date 2009-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.736 Times cited 1 Open Access
Notes Approved Most recent IF: 0.736; 2009 IF: 0.408
Call Number UA @ lucian @ c:irua:95673 Serial 3362
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting nanowires: quantum-confinement effect on the critical magnetic field and supercurrent Type P1 Proceeding
Year 2010 Publication Abbreviated Journal
Volume Issue Pages 327-338
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract (up) We study the effect, of electron confinement on the superconducting-to-normal phase transition driven by a magnetic field and/or on the current-carrying state of the superconducting condensate in nanowires. Our investigation is based on a self-consistent. numerical solution of the Bogoliubov-de Gennes equations. We show that, in a parallel magnetic field and/or in the presence of supercurrent the transition from superconducting to normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magnetic held exhibits quantum-size oscillations with pronounced resonant enhancements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278418300025 Publication Date 2010-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), Interuni-versity Attraction Poles Programme -Belgian State -Belgian Science Policy (IAP) and the ESF-AQDJJ network. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:83294 Serial 3361
Permanent link to this record
 

 
Author Komendová, L.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title The healing lengths in two-band superconductors in extended Ginzburg-Landau theory Type A1 Journal article
Year 2012 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 479 Issue Pages 126-129
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) We study the vortex profiles in two-gap superconductors using the extended Ginzburg-Landau theory. The results shed more light on the disparity between the effective length scales in two bands. We compare the behavior expected from the standard Ginzburg-Landau theory with this new approach, and find good qualitative agreement in the case of LiFeAs. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000308580600029 Publication Date 2012-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 1 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. ; Approved Most recent IF: 1.404; 2012 IF: 0.718
Call Number UA @ lucian @ c:irua:101871 Serial 3585
Permanent link to this record