|   | 
Details
   web
Records
Author Shi, P.; Ratkowsky, D.A.; Li, Y.; Zhang, L.; Lin, S.; Gielis, J.
Title A general leaf area geometric formula exists for plants evidence from the simplified Gielis equation Type A1 Journal article
Year 2018 Publication Forests (19994907) Abbreviated Journal
Volume 9 Issue 11 Pages 714
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Plant leaves exhibit diverse shapes that enable them to utilize a light resource maximally. If there were a general parametric model that could be used to calculate leaf area for different leaf shapes, it would help to elucidate the adaptive evolutional link among plants with the same or similar leaf shapes. We propose a simplified version of the original Gielis equation (SGE), which was developed to describe a variety of object shapes ranging from a droplet to an arbitrary polygon. We used this equation to fit the leaf profiles of 53 species (among which, 48 bamboo plants, 5 woody plants, and 10 geographical populations of a woody plant), totaling 3310 leaves. A third parameter (namely, the floating ratio c in leaf length) was introduced to account for the case when the theoretical leaf length deviates from the observed leaf length. For most datasets, the estimates of c were greater than zero but less than 10%, indicating that the leaf length predicted by the SGE was usually smaller than the actual length. However, the predicted leaf areas approximated their actual values after considering the floating ratios in leaf length. For most datasets, the mean percent errors of leaf areas were lower than 6%, except for a pooled dataset with 42 bamboo species. For the elliptical, lanceolate, linear, obovate, and ovate shapes, although the SGE did not fit the leaf edge perfectly, after adjusting the parameter c, there were small deviations of the predicted leaf areas from the actual values. This illustrates that leaves with different shapes might have similar functional features for photosynthesis, since the leaf areas can be described by the same equation. The anisotropy expressed as a difference in leaf shape for some plants might be an adaptive response to enable them to adapt to different habitats.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451310300054 Publication Date 2018-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1999-4907 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156324 Serial 7389
Permanent link to this record
 

 
Author Gielis, J.
Title Conquering Mount Improbable Type P1 Proceeding
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 153-173 T2 - Proceedings of the 1st International
Keywords P1 Proceeding; Economics; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Our scientific and technological worldviews are largely dominated by the concepts of entropy and complexity. Originating in 19th-century thermodynamics, the concept of entropy merged with information in the last century, leading to definitions of entropy and complexity by Kolmogorov, Shannon and others. In its simplest form, this worldview is an application of the normal rules of arithmetic. In this worldview, when tossing a coin, a million heads or tails in a row is theoretically possible, but impossible in practice and in real life. On this basis, the impossible (in the binary case, the outermost entries of Pascal's triangle xn and yn for large values of n) can be safely neglected, and one can concentrate fully on what is common and what conforms to the law of large numbers, in fields ranging from physics to sociology and everything in between. However, in recent decades it has been shown that what is most improbable tends to be the rule in nature. Indeed, if one combines the outermost entries xn and yn with the normal rules of arithmetic, either addition or multiplication, one obtains Lamé curves and power laws respectively. In this article, some of these correspondences are highlighted, leading to a double conclusion. First, Gabriel Lamé's geometric footprint in mathematics and the sciences is enormous. Second, conic sections are at the core once more. Whereas mathematics so far has been exclusively the language of patterns in the sciences, the door is opened for mathematics to also become the language of the individual. The probabilistic worldview and Lamé's footprint can be seen as dual methods. In this context, it is to be expected that the notions of information, complexity, simplicity and redundancy benefit from this different viewpoint.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-90-833839-0-3 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201045 Serial 9014
Permanent link to this record
 

 
Author Gielis, J.; Ricci, P.E.; Tavkhelidze, I.
Title The Möbius phenomenon in Generalized Möbius-Listing surfaces and bodies, and Arnold's Cat phenomenon Type A1 Journal article
Year 2021 Publication Advanced Studies : Euro-Tbilisi Mathematical Journal Abbreviated Journal
Volume 14 Issue 4 Pages 17-35
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Möbius bands have been studied extensively, mainly in topology. Generalized Möbius-Listing surfaces and bodies providing a full geometrical generalization, is a quite new field, motivated originally by solutions of boundary value problems. Analogous to cutting of the original Möbius band, for this class of surfaces and bodies, results have been obtained when cutting such bodies or surfaces. In general, cutting leads to interlinked and intertwined different surfaces or bodies, resulting in very complex systems. However, under certain conditions, the result of cutting can be a single surface or body, which reduces complexity considerably. Our research is motivated by this reduction of complexity. In the study of cutting Generalized Möbius-Listing bodies with polygons as cross section, the conditions under which a single body results, displaying the Möbius phenomenon of a one-sided body, have been determined for even and odd polygons. These conditions are based on congruence and rotational symmetry of the resulting cross sections after cutting, and on the knife cutting the origin. The Möbius phenomenon is important, since the process of cutting (or separation of zones in a GML body in general) then results in a single body, not in different, intertwined domains. In all previous works it was assumed that the cross section of the GML bodies is constant, but the main result of this paper is that it is sufficient that only one cross section on the whole GML structure meets the conditions for the Möbius phenomenon to occur. Several examples are given to illustrate this.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000774655100002 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:183081 Serial 8258
Permanent link to this record
 

 
Author Huang, L.; Ratkowsky, D.A.; Hui, C.; Gielis, J.; Lian, M.; Shi, P.
Title Inequality measure of leaf area distribution for a drought-tolerant landscape plant Type A1 Journal article
Year 2023 Publication Plants Abbreviated Journal
Volume 12 Issue 17 Pages 3143-11
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Measuring the inequality of leaf area distribution per plant (ILAD) can provide a useful tool for quantifying the influences of intra- and interspecific competition, foraging behavior of herbivores, and environmental stress on plants’ above-ground architectural structures and survival strategies. Despite its importance, there has been limited research on this issue. This paper aims to fill this gap by comparing four inequality indices to measure ILAD, using indices for quantifying household income that are commonly used in economics, including the Gini index (which is based on the Lorenz curve), the coefficient of variation, the Theil index, and the mean log deviation index. We measured the area of all leaves for 240 individual plants of the species Shibataea chinensis Nakai, a drought-tolerant landscape plant found in southern China. A three-parameter performance equation was fitted to observations of the cumulative proportion of leaf area vs. the cumulative proportion of leaves per plant to calculate the Gini index for each individual specimen of S. chinensis. The performance equation was demonstrated to be valid in describing the rotated and right shifted Lorenz curve, given that >96% of root-mean-square error values were smaller than 0.004 for 240 individual plants. By examining the correlation between any of the six possible pairs of indices among the Gini index, the coefficient of variation, the Theil index, and the mean log deviation index, the data show that these indices are closely related and can be used interchangeably to quantify ILAD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001065193100001 Publication Date 2023-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2223-7747 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:199564 Serial 8886
Permanent link to this record
 

 
Author Shi, P.; Ratkowsky, D.A.; Gielis, J.
Title The generalized Gielis geometric equation and its application Type A1 Journal article
Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 12 Issue 4 Pages 645-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Many natural shapes exhibit surprising symmetry and can be described by the Gielis equation, which has several classical geometric equations (for example, the circle, ellipse and superellipse) as special cases. However, the original Gielis equation cannot reflect some diverse shapes due to limitations of its power-law hypothesis. In the present study, we propose a generalized version by introducing a link function. Thus, the original Gielis equation can be deemed to be a special case of the generalized Gielis equation (GGE) with a power-law link function. The link function can be based on the morphological features of different objects so that the GGE is more flexible in fitting the data of the shape than its original version. The GGE is shown to be valid in depicting the shapes of some starfish and plant leaves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000540222200156 Publication Date 2020-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited 4 Open Access
Notes ; This research was funded by the Jiangsu Government Scholarship for Overseas Studies (grant number: JS-2018-038). ; Approved Most recent IF: 2.7; 2020 IF: 1.457
Call Number UA @ admin @ c:irua:168141 Serial 6526
Permanent link to this record
 

 
Author Li, Y.; Quinn, B.K.; Gielis, J.; Li, Y.; Shi, P.
Title Evidence that supertriangles exist in nature from the vertical projections of Koelreuteria paniculata fruit Type A1 Journal article
Year 2022 Publication Symmetry Abbreviated Journal Symmetry-Basel
Volume 14 Issue 1 Pages 23
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Many natural radial symmetrical shapes (e.g., sea stars) follow the Gielis equation (GE) or its twin equation (TGE). A supertriangle (three triangles arranged around a central polygon) represents such a shape, but no study has tested whether natural shapes can be represented as/are supertriangles or whether the GE or TGE can describe their shape. We collected 100 pieces of Koelreuteria paniculata fruit, which have a supertriangular shape, extracted the boundary coordinates for their vertical projections, and then fitted them with the GE and TGE. The adjusted root mean square errors (RMSEadj) of the two equations were always less than 0.08, and >70% were less than 0.05. For 57/100 fruit projections, the GE had a lower RMSEadj than the TGE, although overall differences in the goodness of fit were non-significant. However, the TGE produces more symmetrical shapes than the GE as the two parameters controlling the extent of symmetry in it are approximately equal. This work demonstrates that natural supertriangles exist, validates the use of the GE and TGE to model their shapes, and suggests that different complex radially symmetrical shapes can be generated by the same equation, implying that different types of biological symmetry may result from the same biophysical mechanisms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000746030100001 Publication Date 2021-12-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7
Call Number UA @ admin @ c:irua:186453 Serial 7158
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Quinn, B.K.; Niklas, K.J.; Ratkowsky, D.A.; Schrader, J.; Ruan, H.; Wang, L.; Niinemets, Ü.; Niinennets, U.
Title ‘biogeom’ : an R package for simulating and fitting natural shapes Type A1 Journal article
Year 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann Ny Acad Sci
Volume 1516 Issue 1 Pages 123-134
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Many natural objects exhibit radial or axial symmetry in a single plane. However, a universal tool for simulating and fitting the shapes of such objects is lacking. Herein, we present an R package called 'biogeom' that simulates and fits many shapes found in nature. The package incorporates novel universal parametric equations that generate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and tree-rings, and three growth-rate equations that generate the profiles of ovate leaves and the ontogenetic growth curves of animals and plants. 'biogeom' includes several empirical datasets comprising the boundary coordinates of bird eggs, fruits, lanceolate and ovate leaves, tree rings, seeds, and sea stars. The package can also be applied to other kinds of natural shapes similar to those in the datasets. In addition, the package includes sigmoid curves derived from the three growth-rate equations, which can be used to model animal and plant growth trajectories and predict the times associated with maximum growth rate. 'biogeom' can quantify the intra- or interspecific similarity of natural outlines, and it provides quantitative information of shape and ontogenetic modification of shape with important ecological and evolutionary implications for the growth and form of the living world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000829772300001 Publication Date 2022-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923; 1749-6632 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.2
Call Number UA @ admin @ c:irua:189314 Serial 7131
Permanent link to this record
 

 
Author Wang, L.; Miao, Q.; Niinemets, Ü.; Gielis, J.; Shi, P.
Title Quantifying the variation in the geometries of the outer rims of corolla tubes of Vinca major L Type A1 Journal article
Year 2022 Publication Plants Abbreviated Journal
Volume 11 Issue 15 Pages 1987-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Many geometries of plant organs can be described by the Gielis equation, a polar coordinate equation extended from the superellipse equation, . Here, r is the polar radius corresponding to the polar angle φ; m is a positive integer that determines the number of angles of the Gielis curve when φ ∈ [0 to 2π); and the rest of the symbols are parameters to be estimated. The pentagonal radial symmetry of calyxes and corolla tubes in top view is a common feature in the flowers of many eudicots. However, prior studies have not tested whether the Gielis equation can depict the shapes of corolla tubes. We sampled randomly 366 flowers of Vinca major L., among which 360 had five petals and pentagonal corolla tubes, and six had four petals and quadrangular corolla tubes. We extracted the planar coordinates of the outer rims of corolla tubes (in top view) (ORCTs), and then fitted the data with two simplified versions of the Gielis equation with k = 1 and m = 5: (Model 1), and (Model 2). The adjusted root mean square error (RMSEadj) was used to evaluate the goodness of fit of each model. In addition, to test whether ORCTs are radially symmetrical, we correlated the estimates of n2 and n3 in Model 1 on a log-log scale. The results validated the two simplified Gielis equations. The RMSEadj values for all corolla tubes were smaller than 0.05 for both models. The numerical values of n2 and n3 were demonstrated to be statistically equal based on the regression analysis, which suggested that the ORCTs of V. major are radially symmetrical. It suggests that Model 1 can be replaced by the simpler Model 2 for fitting the ORCT in this species. This work indicates that the pentagonal or quadrangular corolla tubes (in top view) can both be modeled by the Gielis equation and demonstrates that the pentagonal or quadrangular corolla tubes of plants tend to form radial symmetrical geometries during their development and growth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000839115100001 Publication Date 2022-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2223-7747 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189315 Serial 7200
Permanent link to this record
 

 
Author Huang, W.; Li, Y.; Niklas, K.J.; Gielis, J.; Ding, Y.; Cao, L.; Shi, P.
Title A superellipse with deformation and its application in describing the cross-sectional shapes of a square bamboo Type A1 Journal article
Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 12 Issue 12 Pages 2073
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Many cross-sectional shapes of plants have been found to approximate a superellipse rather than an ellipse. Square bamboos, belonging to the genus Chimonobambusa (Poaceae), are a group of plants with round-edged square-like culm cross sections. The initial application of superellipses to model these culm cross sections has focused on Chimonobambusa quadrangularis (Franceschi) Makino. However, there is a need for large scale empirical data to confirm this hypothesis. In this study, approximately 750 cross sections from 30 culms of C. utilis were scanned to obtain cross-sectional boundary coordinates. A superellipse exhibits a centrosymmetry, but in nature the cross sections of culms usually deviate from a standard circle, ellipse, or superellipse because of the influences of the environment and terrain, resulting in different bending and torsion forces during growth. Thus, more natural cross-sectional shapes appear to have the form of a deformed superellipse. The superellipse equation with a deformation parameter (SEDP) was used to fit boundary data. We find that the cross-sectional shapes (including outer and inner rings) of C. utilis can be well described by SEDP. The adjusted root-mean-square error of SEDP is smaller than that of the superellipse equation without a deformation parameter. A major finding is that the cross-sectional shapes can be divided into two types of superellipse curves: hyperellipses and hypoellipses, even for cross sections from the same culm. There are two proportional relationships between ring area and the product of ring length and width for both the outer and inner rings. The proportionality coefficients are significantly different, as a consequence of the two different superellipse types (i.e., hyperellipses and hypoellipses). The difference in the proportionality coefficients between hyperellipses and hypoellipses for outer rings is greater than that for inner rings. This work informs our understanding and quantifying of the longitudinal deformation of plant stems for future studies to assess the influences of the environment on stem development. This work is also informative for understanding the deviation of natural shapes from a strict rotational symmetry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000602546300001 Publication Date 2020-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access
Notes Approved Most recent IF: 2.7; 2020 IF: 1.457
Call Number UA @ admin @ c:irua:174472 Serial 8622
Permanent link to this record
 

 
Author Shi, P.; Yu, K.; Niinemets, Ü.; Gielis, J.
Title Can leaf shape be represented by the ratio of leaf width to length? Evidence from nine species of Magnolia and Michelia (Magnoliaceae) Type A1 Journal article
Year 2021 Publication Forests Abbreviated Journal Forests
Volume 12 Issue 1 Pages 41
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Leaf shape is closely related to economics of leaf support and leaf functions, including light interception, water use, and CO2 uptake, so correct quantification of leaf shape is helpful for studies of leaf structure/function relationships. There are some extant indices for quantifying leaf shape, including the leaf width/length ratio (W/L), leaf shape fractal dimension (FD), leaf dissection index, leaf roundness index, standardized bilateral symmetrical index, etc. W/L ratio is the simplest to calculate, and recent studies have shown the importance of the W/L ratio in explaining the scaling exponent of leaf dry mass vs. leaf surface area and that of leaf surface area vs. leaf length. Nevertheless, whether the W/L ratio could reflect sufficient geometrical information of leaf shape has been not tested. The FD might be the most accurate measure for the complexity of leaf shape because it can characterize the extent of the self-similarity and other planar geometrical features of leaf shape. However, it is unknown how strongly different indices of leaf shape complexity correlate with each other, especially whether W/L ratio and FD are highly correlated. In this study, the leaves of nine Magnoliaceae species (>140 leaves for each species) were chosen for the study. We calculated the FD value for each leaf using the box-counting approach, and measured leaf fresh mass, surface area, perimeter, length, and width. We found that FD is significantly correlated to the W/L ratio and leaf length. However, the correlation between FD and the W/L ratio was far stronger than that between FD and leaf length for each of the nine species. There were no strong correlations between FD and other leaf characteristics, including leaf area, ratio of leaf perimeter to area, fresh mass, ratio of leaf fresh mass to area, and leaf roundness index. Given the strong correlation between FD and W/L, we suggest that the simpler index, W/L ratio, can provide sufficient information of leaf shape for similarly-shaped leaves. Future studies are needed to characterize the relationships among FD and W/L in leaves with strongly varying shape, e.g., in highly dissected leaves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000611074700001 Publication Date 2020-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1999-4907 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.951 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.951
Call Number UA @ admin @ c:irua:174473 Serial 7572
Permanent link to this record
 

 
Author Chiapperino, M.A.; Bia, P.; Caratelli, D.; Gielis, J.; Mescia, L.; Dermol-Cerne, J.; Miklavcic, D.
Title Nonlinear dispersive model of electroporation for irregular nucleated cells Type A1 Journal article
Year 2019 Publication Bioelectromagnetics Abbreviated Journal
Volume 40 Issue 5 Pages 331-342
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) In this work, the electroporation phenomenon induced by pulsed electric field on different nucleated biological cells is studied. A nonlinear, non-local, dispersive, and space-time multiphysics model based on Maxwell's and asymptotic Smoluchowski's equations has been developed to calculate the transmembrane voltage and pore density on both plasma and nuclear membrane perimeters. The irregular cell shape has been modeled by incorporating in the numerical algorithm the analytical functions pertaining to Gielis curves. The dielectric dispersion of the cell media has been modeled considering the multi-relaxation Debye-based relationship. Two different irregular nucleated cells have been investigated and their response has been studied applying both the dispersive and non-dispersive models. By a comparison of the obtained results, differences can be highlighted confirming the need to make use of the dispersive model to effectively investigate the cell response in terms of transmembrane voltages, pore densities, and electroporation opening angle, especially when irregular cell shapes and short electric pulses are considered. Bioelectromagnetics. 2019;40:331-342. (c) 2019 Wiley Periodicals, Inc.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472568200004 Publication Date 2019-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0197-8462 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:161282 Serial 8315
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D.
Title Relevance of the cell membrane modelling for accurate analysis of the pulsed electric field-induced electroporation Type P1 Proceeding
Year 2019 Publication Progress in Electromagnetic Research Symposium (PIERS) T2 – 2019 PhotonIcs & Electromagnetics Research Symposium – Spring (PIERS-Spring), 17-20 June 2019, Rome, Italy Abbreviated Journal
Volume Issue Pages 2985-2991
Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) In this work, a nonlinear dispersive multiphysic model based on Maxwell and asymptotic Smoluchowsky equations has been developed to analyze the electroporation phenomenon induced by pulsed electric field on biological cells. The irregular plasma membrane geometry has been modeled by incorporating in the numerical algorithm the Gielis superformula as well as the dielectric dispersion of the plasma membrane has been modeled using the multi-relaxation Debye-based relationship. The study has been carried out with the aim to compare our model implementing a thin plasma membrane with the simplified model in which the plasma membrane is modeled as a distributed impedance boundary condition. The numerical analysis has been performed exposing the cell to external electric pulses having rectangular shapes. By an inspection of the obtained results, significant differences can be highlighted between the two models confirming the need to incorporate the effective thin membrane into the numerical algorithm to well predict the cell response to the pulsed electric fields in terms of transmembrane voltages and pore densities, especially when the cell is exposed to external nanosecond pulses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000550769302158 Publication Date 2020-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-72813-404-8; 978-1-72813-403-1 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169171 Serial 8469
Permanent link to this record
 

 
Author Düking, R.; Gielis, J.; Liese, W.
Title Carbon flux and carbon stock in a bamboo stand and their relevance for mitigating climate change Type A3 Journal article
Year 2011 Publication Bamboo Science & Culture Abbreviated Journal
Volume 24 Issue 1 Pages 1-6
Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) In this report we describe the basics of biological carbon fixation in bamboo forests. Confusing carbon stock with carbon flux has led to false expectations on the significance of bamboo forests as carbon sinks. Furthermore, misunderstandings about the growth of bamboo culms can lead to highly exaggerated expectations on the productivity of bamboo.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1535-7635 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:91091 Serial 7578
Permanent link to this record
 

 
Author Gielis, J.; Tavkhelidze, I.; Ricci, P.E.
Title About “bulky” links generated by generalized Möbius-Listing bodies GML2n Type A2 Journal article
Year 2013 Publication Journal of mathematical sciences Abbreviated Journal
Volume 193 Issue 3 Pages 449-460
Keywords A2 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) In this paper, we consider the bulky knots and bulky links, which appear after cutting of a Generalized MöbiusListing GMLn2 body (with the radial cross section a convex plane 2-symmetric figure with two vertices) along a different Generalized MöbiusListing surfaces GMLn2 situated in it. The aim of this report is to investigate the number and geometric structure of the independent objects that appear after such a cutting process of GMLn2 bodies. In most cases we are able to count the indices of the resulting mathematical objects according to the known classification for the standard knots and links.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2013-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1072-3374; 1573-8795 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:110953 Serial 7404
Permanent link to this record
 

 
Author de Jong van Coevorden, C.M.; Gielis, J.; Caratelli, D.
Title Application of Gielis transformation to the design of metamaterial structures Type A1 Journal article
Year 2018 Publication Journal of physics : conference series Abbreviated Journal
Volume 963 Issue Pages Unsp 012008
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) In this communication, the use of Gielis transformation to design more compact metamaterial unit cells is explored. For this purpose, transformed complementary split ring resonators and spiral resonators are coupled to micro-strip lines and theirbehaviour is investigated. The obtained results confirm that the useof the considered class of supershaped geometries enables the synthesis of very compact scalable microwave components.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000435022800008 Publication Date 2018-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:150947 Serial 7475
Permanent link to this record
 

 
Author Caratelli, D.; Gielis, J.; Ricci, P.E.; Tavkhelidze, I.
Title Some properties of “bulky” links, generated by Generalized Möbius Listing's bodies GML4n Type A2 Journal article
Year 2016 Publication Journal of mathematical sciences Abbreviated Journal
Volume 216 Issue 4 Pages 509-518
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) In the present paper, we consider the bulky knots and bulky links that appear after cutting of generalized MöbiusListing GML 4 n bodies (with corresponding radial cross sections square) along different generalized MöbiusListing surfaces GML 2 n situated in it. The aim of this article is to examine the number and geometric structure of independent objects that appear after such a cutting process of GML 4 n bodies. In most cases, we are able to count the indices of the resulting mathematical objects according to the known tabulation for knots and links of small complexity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2016-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1072-3374; 1573-8795 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:133948 Serial 8554
Permanent link to this record
 

 
Author Tavkhelidze, I.; Cassisa, C.; Gielis, J.; Ricci, P.E.
Title About “bulky” links, generated by generalized Möbius Listing's bodies GML3n Type A1 Journal article
Year 2013 Publication Matematica e applicazioni : atti della Accademia nazionale dei Lincei Abbreviated Journal
Volume 24 Issue 1 Pages 11-38
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) In the present paper we consider the “bulky knots'' and ”bulky links'', which appear after cutting a Generalized Möbius Listing's GMLn3 body (whose radial cross section is a plane 3-symmetric figure with three vertices) along different Generalized Möbius Listing's surfaces GMLn2 situated in it. This article is aimed to investigate the number and geometric structure of the independent objects appearing after such a cutting process of GMLn3 bodies. In most cases we are able to count the indices of the resulting mathematical objects according to the known tabulation for Knots and Links of small complexity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316567700002 Publication Date 2013-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1120-6357 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:107174 Serial 7405
Permanent link to this record
 

 
Author Yao, W.; Hui, C.; Wang, L.; Wang, J.; Gielis, J.; Shi, P.
Title Comparison of the performance of two polar equations in describing the geometries of elliptical fruits Type A1 Journal article
Year 2024 Publication Botany letters Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract (down) In nature, the two-dimensional (2D) profiles of fruits from many plants often resemble ellipses. However, it remains unclear whether these profiles strictly adhere to the ellipse equation, as many natural shapes resembling ellipses are actually better described as superellipses. The superellipse equation, which includes an additional parameter n compared to the ellipse equation, can generate a broader range of shapes, with the ellipse being just a special case of the superellipse. To investigate whether the 2D profiles of fruits are better described by ellipses or superellipses, we collected a total of 751 mature and undamaged fruits from 31 naturally growing plants of Cucumis melo L. var. agrestis Naud. Our analysis revealed that most adjusted root-mean-square errors (> 92% of the 751 fruits) for fitting the superellipse equation to the fruit profiles were consistently less than 0.0165. Furthermore, there were 638 of the 751 fruits (ca. 85%) with the 95% confidence intervals of the estimated parameter n in the superellipse equation not including 2. These findings suggest that the profiles of C. melo var. agrestis fruits align more closely with the superellipse equation than with the ellipse equation. This study provides evidence for the existence of the superellipse in fruit profiles, which has significant implications for studying fruit geometries and estimating fruit volumes using the solid of revolution formula. Furthermore, this discovery may contribute to a deeper understanding of the mechanisms driving the evolution of fruit shapes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001219634500001 Publication Date 2024-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2381-8107; 2381-8115 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.5 Times cited Open Access
Notes Approved Most recent IF: 1.5; 2024 IF: NA
Call Number UA @ admin @ c:irua:205955 Serial 9140
Permanent link to this record
 

 
Author Tian, F.; Wang, Y.; Sandhu, H.S.; Gielis, J.; Shi, P.
Title Comparison of seed morphology of two ginkgo cultivars Type A1 Journal article
Year 2020 Publication Journal Of Forestry Research Abbreviated Journal J Forestry Res
Volume 31 Issue 3 Pages 751-758
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Ginkgo biloba L. is a precious relic tree species with important economic value. Seeds, as a vital reproductive organ of plants, can be used to distinguish cultivars of the species. We chose 400 seeds from two cultivars of ginkgo (Fozhi and Maling; 200 seeds for each cultivar) as the study material and used the Gielis equation to fit the projected shape of these seeds. The coefficients of variation (CV) in root mean squared errors (RMSE) obtained from the fitted data were used to compare the level of inter-cultivar variations in seed shape. We also used the covariance analysis to compare the allometric relationships between seed weights and projected areas of these two cultivars. The Gielis equation fitted well the seed shapes of two ginkgo cultivars. The lower CV in RMSE of cultivar Fozhi than Maling indicated a less symmetrical seed shape in the latter than the former. The bootstrap percentile method showed that the seed shape differences between the two cultivars were significant. However, there was no significant difference in the exponents between the seed weights and the projected areas of these two cultivars. Overall, the significant differences in shapes between the seeds of two ginkgo cultivars were well explained by the Gielis equation; this model can be further extended to compare morphological differences in other ginkgo cultivars, and even for plant seeds or animal eggs that have similar oval shapes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000529367600005 Publication Date 2018-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1007-662x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3 Times cited 3 Open Access
Notes ; ; Approved Most recent IF: 3; 2020 IF: 0.774
Call Number UA @ admin @ c:irua:154987 Serial 6474
Permanent link to this record
 

 
Author Gielis, J.; Caratelli, D.; de Jong van Coevorden, M.; Ricci, P.E.
Title The common descent of biological shape description and special functions Type H1 Book chapter
Year 2018 Publication Abbreviated Journal
Volume 230 Issue Pages 119-131 T2 - Differential and difference equations
Keywords H1 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Gielis transformations, with their origin in botany, are used to define square waves and trigonometric functions of higher order. They are rewritten in terms of Chebyshev polynomials. The origin of both, a uniform descriptor and the origin of orthogonal polynomials, can be traced back to a letter of Guido Grandi to Leibniz in 1713 on the mathematical description of the shape of flowers. In this way geometrical description and analytical tools are seamlessly combined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451375900010 Publication Date 2018-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-75646-2; 2194-1009; 978-3-319-75647-9; 978-3-319-75646-2 Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:150949 Serial 7685
Permanent link to this record
 

 
Author Gielis, J.; Grigolia, R.
Title Lamé curves and Rvachev's R-functions Type A3 Journal article
Year 2022 Publication Sn – 1512-0066 Abbreviated Journal
Volume 37 Issue Pages 1-4
Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Gielis transformations are a generalization of Lame curves. To combine domains, we can make use of the natural alliance between Lame's work and Rvachev's R-functions. A logical next step is the extension to n-valued logic dening dierent partitions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189316 Serial 7178
Permanent link to this record
 

 
Author Gielis, J.; Caratelli, D.; Fougerolle, Y.; Ricci, P.E.; Tavkelidze, I.; Gerats, T.
Title Universal natural shapes : from unifying shape description to simple methods for shape analysis and boundary value problems Type A1 Journal article
Year 2012 Publication PLoS ONE Abbreviated Journal
Volume 7 Issue 9 Pages e29324-11
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm. Then, we show how complex curves of k-type can be constructed and how solutions to the Dirichlet problem for the Laplace equation on these complex domains can be derived using a semi-Fourier method. In all three methods, descriptive and computational power and efficiency is obtained in a surprisingly simple way.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309517500001 Publication Date 2012-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:102202 Serial 8711
Permanent link to this record
 

 
Author Fougerolle, Y.D.; Truchetet, F.; Demonceaux, C.; Gielis, J.
Title A robust evolutionary algorithm for the recovery of rational Gielis curves Type A1 Journal article
Year 2013 Publication Pattern recognition Abbreviated Journal
Volume 46 Issue 8 Pages 2078-2091
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Gielis curves (GC) can represent a wide range of shapes and patterns ranging from star shapes to symmetric and asymmetric polygons, and even self intersecting curves. Such patterns appear in natural objects or phenomena, such as flowers, crystals, pollen structures, animals, or even wave propagation. Gielis curves and surfaces are an extension of Lamé curves and surfaces (superquadrics) which have benefited in the last two decades of extensive researches to retrieve their parameters from various data types, such as range images, 2D and 3D point clouds, etc. Unfortunately, the most efficient techniques for superquadrics recovery, based on deterministic methods, cannot directly be adapted to Gielis curves. Indeed, the different nature of their parameters forbids the use of a unified gradient descent approach, which requires initial pre-processings, such as the symmetry detection, and a reliable pose and scale estimation. Furthermore, even the most recent algorithms in the literature remain extremely sensitive to initialization and often fall into local minima in the presence of large missing data. We present a simple evolutionary algorithm which overcomes most of these issues and unifies all of the required operations into a single though efficient approach. The key ideas in this paper are the replacement of the potential fields used for the cost function (closed form) by the shortest Euclidean distance (SED, iterative approach), the construction of cost functions which minimize the shortest distance as well as the curve length using R-functions, and slight modifications of the evolutionary operators. We show that the proposed cost function based on SED and R-function offers the best compromise in terms of accuracy, robustness to noise, and missing data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317944800002 Publication Date 2013-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:107181 Serial 8485
Permanent link to this record
 

 
Author Gielis, J.; Tavkhelidze, I.; Ricci, P.E.
Title Generalized Möbius-Listing bodies and the heart Type A3 Journal article
Year 2023 Publication Sn – 2247-689x Abbreviated Journal
Volume 13 Issue 2 Pages 58-70
Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Generalized Möbius-Listing surfaces and bodies generalize Möbius bands, and this research was motivated originally by solutions of boundary value problems. Analogous to cutting of the original Möbius band, for this class of surfaces and bodies, results have been obtained when cutting such bodies or surfaces. The results can be applied in a wide range of fields in the natural science, and here we propose how they can serve as a model for the heart and the circulatory system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos http://rjm-cs.ro/2023v13i2_7.pdf#page=1 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; http://rjm-cs.ro/2023v13i2_7.pdf#page=1
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200773 Serial 9043
Permanent link to this record
 

 
Author Gielis, J.; Tavkhelidze, I.
Title A note on Generalized Möbius-Listing Bodies Type P1 Proceeding
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 31-39 T2 - Proceedings of the 1st International Sy
Keywords P1 Proceeding; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Generalized Möbius-Listing surfaces and bodies generalize Möbius bands, and this research was motivated originally by solutions of boundary value problems. Analogous to cutting of the original Möbius band, for this class of surfaces and bodies, results have been obtained when cutting such bodies or surfaces. In general, cutting leads to interlinked and intertwined different surfaces or bodies, resulting in very complex systems. However, under certain conditions, the result of cutting can be a single surface or body, which reduces complexity considerably. These conditions are based on congruence and rotational symmetry of the resulting cross sections after cutting, and on the knife cutting the origin
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-90-833839-0-3 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201047 Serial 9063
Permanent link to this record
 

 
Author Gielis, J.
Title Phi-bonacci in Ancient Greece Type A1 Journal article
Year 2021 Publication Symmetry : culture and science Abbreviated Journal
Volume 32 Issue 1 Pages 25-40
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Fibonacci numbers are a very popular subject in mathematics, culture and science. A major open question is why the ancient Greeks overlooked this series, while they were very familiar with the golden mean and division in extreme and mean ratio. Furthermore, they could compute the square root of five to a high degree of precision using Theon 's ladder. This fact is based on tables built with side and diagonal numbers, and it is a simple and incredibly efficient method to compute roots of integers, though it is little known even now among most of the experts. The biologist D 'Arcy Wentworth Thompson showed that the same method could be used to generate the Fibonacci series using a simple shift in the computation of the tables. He argues, quite convincingly, that the ancient Greeks could not have overlooked this. Actually, the same method can be used to generate all possible regular phyllotaxis patterns.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000643822700002 Publication Date 2021-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:178322 Serial 8376
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D.
Title Design of electroporation process in irregularly shaped multicellular systems Type A1 Journal article
Year 2019 Publication Electronics (Basel) Abbreviated Journal
Volume 8 Issue 1 Pages 37
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Electroporation technique is widely used in biotechnology and medicine for the transport of various molecules through the membranes of biological cells. Different mathematical models of electroporation have been proposed in the literature to study pore formation in plasma and nuclear membranes. These studies are mainly based on models using a single isolated cell with a canonical shape. In this work, a spacetime (x,y,t) multiphysics model based on quasi-static Maxwells equations and nonlinear Smoluchowskis equation has been developed to investigate the electroporation phenomenon induced by pulsed electric field in multicellular systems having irregularly shape. The dielectric dispersion of the cell compartments such as nuclear and plasmatic membranes, cytoplasm, nucleoplasm and external medium have been incorporated into the numerical algorithm, too. Moreover, the irregular cell shapes have been modeled by using the Gielis transformations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000457142800037 Publication Date 2019-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-9292 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:157203 Serial 7765
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D.
Title Multiphysics modelling of membrane electroporation in irregularly shaped cells Type P1 Proceeding
Year 2019 Publication Progress in Electromagnetic Research Symposium (PIERS) T2 – 2019 PhotonIcs & Electromagnetics Research Symposium – Spring (PIERS-Spring), 17-20 June 2019, Rome, Italy Abbreviated Journal
Volume Issue Pages 2992-2998
Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Electroporation is a non-thermal electromagnetic phenomenon widely used in medical diseases treatment. Different mathematical models of electroporation have been proposed in literature to study pore evolution in biological membranes. This paper presents a nonlinear dispersive multiphysic model of electroporation in irregular shaped biological cells in which the spatial and temporal evolution of the pores size is taken into account. The model solves Maxwell and asymptotic Smoluchowski equations and it describes the dielectric dispersion of cell media using a Debye-based relationship. Furthermore, the irregular cell shape has been modeled using the Gielis superformula. Taking into account the cell in mitosis phase, the electroporation process has been studied comparing the numerical results pertaining the model with variable pore radius with those in which the pore radius is supposed constant. The numerical analysis has been performed exposing the biological cell to a rectangular electric pulse having duration of 10 μs. The obtained numerical results highlight considerable differences between the two different models underling the need to include into the numerical algorithm the differential equation modeling the spatial and time evolution of the pores size.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000550769302159 Publication Date 2020-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-72813-404-8; 978-1-72813-403-1 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169170 Serial 8288
Permanent link to this record
 

 
Author Mescia, L.; Bia, P.; Gielis, J.; Caratelli, D.
Title Advanced particle swarm optimization methods for electromagnetics Type P1 Proceeding
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 109-122 T2 - Proceedings of the 1st International
Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Electromagnetic design problems involve optimizing multiple parameters that are nonlinearly related to objective functions. Traditional optimization techniques require significant computational resources that grow exponentially as the problem size increases. Therefore, a method that can produce good results with moderate memory and computational resources is desirable. Bioinspired optimization methods, such as particle swarm optimization (PSO), are known for their computational efficiency and are commonly used in various scientific and technological fields. In this article we explore the potential of advanced PSO-based algorithms to tackle challenging electromagnetic design and analysis problems faced in real-life applications. It provides a detailed comparison between conventional PSO and its quantum-inspired version regarding accuracy and computational costs. Additionally, theoretical insights on convergence issues and sensitivity analysis on parameters influencing the stochastic process are reported. The utilization of a novel quantum PSO-based algorithm in advanced scenarios, such as reconfigurable and shaped lens antenna synthesis, is illustrated. The hybrid modeling approach, based on the unified geometrical description enabled by the Gielis Transformation, is applied in combination with a suitable quantum PSO-based algorithm, along with a geometrical tube tracing and physical optics technique for solving the inverse problem aimed at identifying the geometrical parameters that yield optimal antenna performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-90-833839-0-3 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201048 Serial 9002
Permanent link to this record
 

 
Author Shi, P.; Chen, L.; Quinn, B.K.; Yu, K.; Miao, Q.; Guo, X.; Lian, M.; Gielis, J.; Niklas, K.J.
Title A simple way to calculate the volume and surface area of avian eggs Type A1 Journal article
Year 2023 Publication Annals of the New York Academy of Sciences Abbreviated Journal
Volume 1524 Issue 1 Pages 118-131
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Egg geometry can be described using Preston's equation, which has seldom been used to calculate egg volume (V) and surface area (S) to explore S versus V scaling relationships. Herein, we provide an explicit re-expression of Preston's equation (designated as EPE) to calculate V and S, assuming that an egg is a solid of revolution. The side (longitudinal) profiles of 2221 eggs of six avian species were digitized, and the EPE was used to describe each egg profile. The volumes of 486 eggs from two avian species predicted by the EPE were compared with those obtained using water displacement in graduated cylinders. There was no significant difference in V using the two methods, which verified the utility of the EPE and the hypothesis that eggs are solids of revolution. The data also indicated that V is proportional to the product of egg length (L) and maximum width (W) squared. A 2/3-power scaling relationship between S and V for each species was observed, that is, S is proportional to (LW2)(2/3). These results can be extended to describe the shapes of the eggs of other species to study the evolution of avian (and perhaps reptilian) eggs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000975679400001 Publication Date 2023-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923; 1749-6632 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.2; 2023 IF: 4.706
Call Number UA @ admin @ c:irua:196724 Serial 8827
Permanent link to this record