toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author van Malderen, H.; Hoornaert, S.; Van Grieken, R. doi  openurl
  Title Identification of individual aerosol particles containing Cr, Pb, and Zn above the North Sea Type A1 Journal article
  Year 1996 Publication Environmental science and technology Abbreviated Journal  
  Volume 30 Issue Pages 489-498  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Aerosol samples have been collected over the southern bight of the North Sea from an aircraft. In this way, 96 samples were taken for single-particle analysis during 16 flights. Almost 45 000 individual particles were analyzed with electron probe X-ray microanalysis. More than 5000 of these were found to contain significant concentrations of one or more of the heavy metals Cr, Pb, and Zn. With the help of hierarchical, nonhierarchical, and fuzzy clustering techniques, various heavy metal-containing particle types could be identified. Significant differences in abundances were detected in the North Sea heavy metal aerosol, depending on the origin of the air masses. In samples with continental influence 50 times more Zn- and Pb-containing particles were found than in samples with a marine history. For Cr, on the other hand, we found abundances in the marine sector that were one-third of the values for continental sectors. This might point to a rather undefined marine source, which could be the recycling of previously deposited material by reinjection into the atmosphere by sea spray. The highest values for Cr-, Pb-, and Zn-containing particles were always detected under southeastern wind directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1996TT49600036 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:14639 Serial 8053  
Permanent link to this record
 

 
Author Artaxo, P.; Storms, H.; Bruynseels, F.; Van Grieken, R.; Maenhaut, W. doi  openurl
  Title Composition and sources of aerosols from the Amazon basin Type A1 Journal article
  Year 1988 Publication Journal of geophysical research Abbreviated Journal  
  Volume 93 Issue D2 Pages 1605-1615  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Aerosols were sampled in the Amazon Basin, as part of the Global Tropospheric Experiment (GTE), during the Amazon Boundary Layer Experiment (ABLE 2A) in JulyAugust 1985. Fine- and coarse-particle fractions were analyzed for 22 elements by particle-induced X ray emission. Gravimetric mass, black carbon, sulfate, and nitrate concentrations were also determined. Morphological and trace element measurements of individual particles were carried out by automated electron probe X ray microanalysis. Various receptor models, including multivariate methods and a chemical mass balance model, were employed in the interpretation of the bulk trace element concentrations. Three factors explained over 85% of the variability of fine- and coarse-mode variables. On the basis of the elemental composition of the factors, two could be identified as plant related, and the third was a soil dust component. Of the coarse-mode aerosol mass concentration (of 7.6±1.6 μg/m3), 62% could be attributed to aerosols released by the vegetation and 11% to soil dust. In the fine mode, soil dust accounted for less than 10% of the measured mass concentration (of 6.8±3.9 μg/m3). The variables related to the plant component were K, P, S, Ca, Mg, Cl, Rb, and the gravimetric mass. The elemental profile of the plant component resembled the bulk plant composition. By single-particle analysis coupled with hierarchical cluster analysis, six to nine different biogenic-related particle groups could be identified in the fine- and coarse-aerosol modes. Almost all particle types consisted predominantly of carbonaceous material, with trace amounts of K, S, Ca, P, Cl, and Na. Only one group, comprising less than 11% of the total number of particles, consisted of soil dustrelated aerosol.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1988M303000024 Publication Date 2008-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227; 2156-2202; 0022-1406; 0196-6928; 0196-6936; 0885-3401; 8755-8556; 0196-2256; 0747-7309; 1 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:113609 Serial 7702  
Permanent link to this record
 

 
Author Reynaert, S.; D’Hose, T.; de Boeck, H.J.; Laorden, D.; Dult, L.; Verbruggen, E.; Nijs, I. pdf  doi
openurl 
  Title Can permanent grassland soils with elevated organic carbon buffer negative effects of more persistent precipitation regimes on forage grass performance? Type A1 Journal article
  Year 2024 Publication The science of the total environment Abbreviated Journal  
  Volume 918 Issue Pages 170623-15  
  Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract (up) Agricultural practices enhancing soil organic carbon (SOC) show potential to buffer negative effects of climate change on forage grass performance. We tested this by subjecting five forage grass varieties differing in fodder quality and drought/flooding resistance to increased persistence in summer precipitation regimes (PR) across sandy and sandy-loam soils from either permanent (high SOC) or temporary grasslands (low SOC) in adjacent parcels. Over the course of two consecutive summers, monoculture mesocosms were subjected to rainy/dry weather alternation either every 3 days or every 30 days, whilst keeping total precipitation equal. Increased PR persistence induced species-specific drought damage and productivity declines. Soils from permanent grasslands with elevated SOC buffered plant quality, but buffering effects of SOC on drought damage, nutrient availability and yield differed between texture classes. In the more persistent PR, Festuca arundinacea FERMINA was the most productive species but had the lowest quality under both ample water supply and mild soil drought, whilst under the most intense soil droughts, Festulolium FESTILO maintained the highest yields. The hybrid Lolium × boucheanum kunth MELCOMBI had intermediate productivity and both Lolium perenne varieties showed the lowest yields under soil drought, but the highest forage quality (especially the tetraploid variety MELFORCE). Performance varied with plant maturity stage and across seasons/years and was driven by altered water and nutrient availability and related nitrogen nutrition among species during drought and upon rewetting. Moreover, whilst permanent grassland soils showed the most consistent positive effects on plant performance, their available water capacity also declined under increased PR persistence. We conclude that permanent grassland soils with historically elevated SOC likely buffer negative effects of increasing summer weather persistence on forage grass performance, but may also be more sensitive to degradation under climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001183615800001 Publication Date 2024-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.8 Times cited Open Access  
  Notes Approved Most recent IF: 9.8; 2024 IF: 4.9  
  Call Number UA @ admin @ c:irua:204498 Serial 9191  
Permanent link to this record
 

 
Author Tavkhelidze, I.; Caratelli, D.; Gielis, J.; Ricci, P.E.; Rogava, M.; Transirico, M. doi  isbn
openurl 
  Title On a geometric model of bodies with “complex” configuration and some movements Type H1 Book chapter
  Year 2017 Publication Abbreviated Journal  
  Volume 2 Issue Pages 129-158 T2 - Modeling in mathematics : proceedings  
  Keywords H1 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) Aim of this chapter is analytical representation of one wide class of geometric figures (lines, surfaces and bodies) and their complicated displacements. The accurate estimation of physical characteristics (such as volume, surface area, length, or other specific parameters) relevant to human organs is of fundamental importance in medicine. One central idea of this article is, in this respect, to provide a general methodology for the evaluation, as a function of time, of the volume and center of gravity featured by moving of one class of bodies used of describe different human organs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000442076400010 Publication Date 2017-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-94-6239-260-1; 978-94-6239-261-8; 2543-0300; 978-94-6239-260-1 Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144552 Serial 8326  
Permanent link to this record
 

 
Author Lembrechts, J.; Clavel, J.; Lenoir, J.; Haider, S.; McDougall, K.; Nunez, M.; Alexander, J.; Barros, A.; Milbau, A.; Seipel, T.; Verbruggen, E.; Nijs, I. doi  openurl
  Title Dataset: Roadside disturbance promotes plant communities with arbuscular mycorrhizal associations in mountain regions worldwide Type Dataset
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract (up) Aim: We aimed to assess the impact of road disturbances on the dominant mycorrhizal types in ecosystems at the global level and how this mechanism can potentially lead to lasting plant community changes. Location: Globally distributed mountain regions Time Period: 2007-2018 Taxa studied: Plants (linked to their associated mycorrhizal fungi) Methods: We used a database of coordinated plant community surveys following mountain roads from 894 plots in 11 mountain regions across the globe in combination with an existing database of mycorrhizal-plant associations in order to approximate the relative abundance of mycorrhizal types in natural and disturbed environments. Results: Our findings show that roadside disturbance promotes the cover of plants associated with arbuscular mycorrhizal (AM) fungi. This effect is especially strong in colder mountain environments and in mountain regions where plant communities are dominated by ectomycorrhizal (EcM) or ericoid-mycorrhizal (ErM) associations. Furthermore, non-native plant species, which we confirmed to be mostly AM plants, are more successful in environments dominated by AM associations. Main Conclusions: These biogeographical patterns suggest that changes in mycorrhizal types could be a crucial factor in the worldwide impact of anthropogenic disturbances on mountain ecosystems. Indeed, roadsides foster AM-dominated systems, where AM-fungi might aid AM-associated plant species while potentially reducing the biotic resistance against invasive non-native species, often also associated with AM networks. Restoration efforts in mountain ecosystems will have to contend with changes in the fundamental make-up of EcM- and ErM plant communities induced by roadside disturbance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:206132 Serial 9198  
Permanent link to this record
 

 
Author Rojas, C.M.; Figueroa, L.; Janssens, K.H.; Van Espen, P.E.; Adams, F.C.; Van Grieken, R.E. pdf  doi
openurl 
  Title The elemental composition of airborne particulate matter in the Atacama desert, Chile Type A1 Journal article
  Year 1990 Publication The science of the total environment Abbreviated Journal  
  Volume 91 Issue Pages 251-267  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Air particulate samples were collected at Chapiquiña near Arica (Chile) with a six-stage cascade impactor for about 17-day periods during a 31 month interval. Sixteen elements were determined by energy dispersive X-ray fluorescence analysis, and the elemental concentrations were subjected to principal factor analysis. The variability with time of the coarse particles was described by two factors both related to soil dispersion, whereas the fine particle variations could be explained by a third factor related to marine influence. Enrichment factors were compared with those obtained in other remote continental areas, in particular those of air particulate matter sampled at Chacaltaya, Bolivia. Results point to a negligible anthropogenic influence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1990CM36100019 Publication Date 2003-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116652 Serial 5602  
Permanent link to this record
 

 
Author Ysebaert, T.; Koch, K.; Samson, R.; Denys, S. pdf  url
doi  openurl
  Title Green walls for mitigating urban particulate matter pollution : a review Type A1 Journal article
  Year 2021 Publication Urban Forestry & Urban Greening Abbreviated Journal Urban For Urban Gree  
  Volume 59 Issue Pages 127014  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) Air pollution caused by particulate matter (PM) is a well-known health issue in urban environments. Urban green infrastructure offers opportunities as a nature-based solution to urban PM pollution. Green walls have advantages over other types of urban green infrastructure, since they can be applied to the enormous available wall area in cities and since they do not interfere with the prevailing ventilation resulting in elevated PM levels. However, this has raised questions about the effectiveness of GW in removing PM and this could explain the limited applicability of green walls to tackle PM pollution. Nevertheless, it is suggested that green walls have a significant unexploited potential and this review article aims to address current knowledge gaps and to propose future research requirements for the implementation of green walls to mitigate urban PM pollution. An in-depth analysis is given of the mechanisms behind PM deposition and the influence of vegetation properties on this process, as well as the practices followed to model PM dispersion and deposition. It was suggested that particle deposition on green walls depends on the green wall species, pollution level, and the residence time of PM in a street (canyon). Rainfall plays an important role in the PM pathway, although it is not a necessary requirement to sustain PM deposition on plant leaves. There are still some discrepancies in the literature about the ideal plant characteristics for PM deposition in terms of the macro- and microstructures that require further investigation, especially in comparison with tree and shrub species. In addition, extensively validated models are required to accurately calculate the impact of green walls on air flow and the PM concentration on site.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632597600001 Publication Date 2021-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-8667 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.113 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.113  
  Call Number UA @ admin @ c:irua:175581 Serial 8011  
Permanent link to this record
 

 
Author Godoi, R.H.M.; Braga, D.M.; Makarovska, Y.; Alfoldy, B.; Carvalho Filho, M.A.S.; Van Grieken, R.; Godoi, A.F.L. doi  openurl
  Title Inhable particulate matter from lime industries: chemical composition and deposition in human respiratory tract Type A1 Journal article
  Year 2008 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 42 Issue 30 Pages 7027-7033  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Air pollution caused by the lime production industry has become a serious problem with potential effects to human health, especially in developing countries. Colombo is a city included in the Metropolitan Region of Curitiba (capital of Parana State) in South Brazil. In Colombo city, a correlation has been shown between the lime production and the number of persons who need respiratory treatment in a local hospital, indicating that the lime industry can cause deleterious health effects in the exposed workers and population. This research was conducted to deal firstly with the characterization of the size distribution and chemical compositions of particles emitted from lime manufacturing and subsequently to assess the deposition rate of inhaled dolomitic lime aerosol particles in the human respiratory tract. The elemental chemical composition and particle size of individual atmospheric particles was quantitatively elucidated, including low-Z components like C, N and 0, as well as higher-Z elements, using automated electron probe microanalysis. Information concerning the bulk composition is provided by energy-dispersive X-ray detection. The majority of the respirable particulate matter identified was composed of aluminosilicates, Ca-Mg oxides, carbon-rich particles, mixtures of organic particles and Ca-Mg carbonates, soot and biogenic particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated, revealing the deposition of CaO center dot MgO at extrathoracic, tracheobronchial and pulmonary levels. The results of this study offer evidence to the threat of the fine and coarse particles emitted from dolomite lime manufacturing, allowing policy-makers to better focus their mitigation strategies in an effective way, as well as to the dolomite producers for the purpose of designing and/or implementing improved emission controls.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000260265300001 Publication Date 2008-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:70451 Serial 8101  
Permanent link to this record
 

 
Author Semlali, B.-eddine B.; El Amrani, C.; Denys, S. pdf  doi
openurl 
  Title Development of a Java-based application for environmental remote sensing data processing Type A1 Journal article
  Year 2019 Publication International Journal of Electrical and Computer Engineering Abbreviated Journal  
  Volume 9 Issue 3 Pages 1978-1986  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) Air pollution is one of the most serious problems the world faces today. It is highly necessary to monitor pollutants in real-time to anticipate and reduce damages caused in several fields of activities. Likewise, it is necessary to provide decision makers with useful and updated environmental data. As a solution to a part of the above-mentioned necessities, we developed a Java-based application software to collect, process and visualize several environmental and pollution data, acquired from the Mediterranean Dialog earth Observatory (MDEO) platform [1]. This application will amass data of Morocco area from EUMETSAT satellites, and will decompress, filter and classify the received datasets. Then we will use the processed data to build an interactive environmental real-time map of Morocco. This should help finding out potential correlations between pollutants and emitting sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2088-8708 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:163847 Serial 7799  
Permanent link to this record
 

 
Author Voordeckers, D. openurl 
  Title Design to breathe : understanding and altering wind patterns in street canyons to reduce human exposure to air pollution Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages xxii, 303 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract (up) Air pollution is proclaimed by the World Health Organiaation (WHO) as the biggest environmental threat to human health. Street canyons, or urban roads flanked by a continuous row of high buildings on both sides, are perceived as typical bottleneck areas for air quality due to their lack of natural ventilation. This doctoral thesis aims to integrate expert knowledge on in-canyon flow fields and pollution dispersion in street canyons from the specialized field of (bio)engineering into the field of urban planning and vice versa. In Chapter 1, a Geospatial Information System (GIS) method was developed to detect exposure zones and hotspot street canyons. A critical combination between aspect ratio (AR > 0.65) and traffic volume (TVmax > 300) was detected and subsequently used to detect hotspot street canyons in three major European cities (Antwerp, London and Paris). Chapter 2 focusses on acquiring in-depth knowledge on flow and concentration fields in street canyons by conducting an extensive literature review on over 200 studies and translates this knowledge into nineteen guidelines and eleven spatial tools, comprised in a toolbox for urban planning. Subsequently, computational fluid dynamics (CFD) was used into a research trough design process (Chapter 4) to illustrate how the design tools can be applied to a specific case study (Belgiëlei, Antwerp). Alternations to traffic lanes (traffic lane reduction and lateral displacement) combined with low boundary walls (LBWs), were found to reduce NO2 levels in the entire pedestrian area up to – 3.6 % and peak pollutions were reduced by -8 %. A maximum NO2 reduction was reached by combining a traffic lane displacement with hedges, adjustments to the tree planting pattern and an increased ground-level permeability, leading to reductions up to – 4.5 % in the pedestrian areas. In conclusion, urban design was found to be a valuable tool to enhance the effect of emission reduction strategies and draw in-canyon concentrations closer to the value of the background concentration. However, the background concentration seemed to dominate the efficiency of the urban design interventions and therefore, additional measures should be taken to reduce background pollution levels. This dissertation aims to contribute to the awareness of air pollution in street canyons, as well as support local governments in taking action by delivering spatial tools and guidelines applicable for urban planning and represents a framework for the dissemination of expert information on air quality in street canyons to the field of urban planning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:196399 Serial 7767  
Permanent link to this record
 

 
Author Voordeckers, D.; Meysman, F.J.R.; Billen, P.; Tytgat, T.; Van Acker, M. url  doi
openurl 
  Title The impact of street canyon morphology and traffic volume on NO₂ values in the street canyons of Antwerp Type A1 Journal article
  Year 2021 Publication Building And Environment Abbreviated Journal Build Environ  
  Volume 197 Issue Pages 107825-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract (up) Air pollution remains a major environmental and health concern in urban environments, especially in street canyons that show increased pollution levels due to a lack of natural ventilation. Previous studies have investigated the relationship between street canyon morphology and in-canyon pollution levels. However, these studies are typically limited to the scale of a single street canyon and city-wide assessments on this matter are scarce. In 2018, NO2 concentrations were measured in 321 street canyons in the city of Antwerp (Belgium) as part of the large-scale citizen-science project “CurieuzeNeuzen”. In our research, this data was used to study the correlation between morphological indices (e.g. aspect ratio (AR), lateral aspect ratio (LAR), presence of trees) and the traffic volumes on a city-wide scale. The maximum hourly traffic volume (TVmax) and AR correlated significantly with the measured NO2 values, making them useful indicators for air quality in street canyons. For street canyons with AR > 0.65, a TVmax of 300 vehicles/hour was found as a threshold value to guarantee acceptable air quality. No significant correlations were found for the other parameters. Finally, a number of typical street canyon types were defined, which can be of fundamental interest for further research and spatial policy making.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663167900003 Publication Date 2021-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.053 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.053  
  Call Number UA @ admin @ c:irua:176925 Serial 8064  
Permanent link to this record
 

 
Author Maes, R.R.; Potters, G.; Fransen, E.; Geuens, J.; Van Schaeren, R.; Lenaerts, S. url  doi
openurl 
  Title Can we find an optimal fatty acid composition of biodiesel in order to improve oxidation stability? Type A1 Journal article
  Year 2023 Publication Sustainability Abbreviated Journal  
  Volume 15 Issue 13 Pages 10310-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Medical Genetics (MEDGEN)  
  Abstract (up) Air quality currently poses a major risk for human health. Currently, diesel is widely used as fuel and is a significant source of nitrogen oxides (NOx) and particulate matter (PM), both hazardous to human health. A good alternative for mineral diesel is biodiesel, not only for the improvement of hazardous components in the exhaust gases but also because it can be produced in view of a circular economy. Biodiesel consists of a mix of different fatty acid methyl esters, which can react with oxygen. As a consequence, the oxidation stability of biodiesel has to be studied, because the oxidation of biodiesel could affect the performance of the engine due to the wear of injectors and fuel pumps. The oxidation stability could also affect the quality of the exhaust gases due to increases in NOx and PM. The basic question we try to answer in this communication is: 'Can we find an optimal fatty acid composition in order to have a maximal oxidation stability?' In this article, we try to find the optimal fatty acid composition according to the five most common fatty acid methyl esters present in biodiesel in order to reach a maximal oxidation stability. The measurements and statistical analysis show, however, that there is no useful regression model because there are statistically significant two- and three-way interactions among the different fatty acids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001028597300001 Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.9; 2023 IF: 1.789  
  Call Number UA @ admin @ c:irua:198241 Serial 8839  
Permanent link to this record
 

 
Author Maes, R.R.; Potters, G.; Fransen, E.; Van Schaeren, R.; Lenaerts, S. url  doi
openurl 
  Title Influence of adding low concentration of oxygenates in mineral diesel oil and biodiesel on the concentration of NO, NO₂ and particulate matter in the exhaust gas of a one-cylinder diesel generator Type A1 Journal article
  Year 2022 Publication International journal of environmental research and public health Abbreviated Journal  
  Volume 19 Issue 13 Pages 7637-18  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) Air quality currently poses a major risk to human health worldwide. Transportation is one of the principal contributors to air pollution due to the quality of exhaust gases. For example, the widely used diesel fuel is a significant source of nitrogen oxides (NOx) and particulate matter (PM). To reduce the content NOx and PM, different oxygenated compounds were mixed into a mineral diesel available at the pump, and their effect on the composition of exhaust gas emissions was measured using a one-cylinder diesel generator. In this setup, adding methanol gave the best relative results. The addition of 2000 ppm of methanol decreased the content of NO by 56%, 2000 ppm of isopropanol decreased NO2 by 50%, and 2000 ppm ethanol decreased PM by 63%. An interesting question is whether it is possible to reduce the impact of hazardous components in the exhaust gas even more by adding oxygenates to biodiesels. In this article, alcohol is added to biodiesel in order to establish the impact on PM and NOx concentrations in the exhaust gases. Adding methanol, ethanol, and isopropanol at concentrations of 2000 ppm and 4000 ppm did not improve NOx emissions. The best results were using pure RME for a low NO content, pure diesel for a low NO2 content, and for PM there were no statistically significant differences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000825645900001 Publication Date 2022-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1661-7827; 1660-4601 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189476 Serial 7172  
Permanent link to this record
 

 
Author Annegarn, H.J.; Storms, H.; Van Grieken, R.E.; Booth-Jones, P.A. pdf  doi
openurl 
  Title Composition and size of individual particles from a gold mine atmosphere Type A3 Journal article
  Year 1987 Publication Mining science & technology Abbreviated Journal  
  Volume 5 Issue 2 Pages 111-119  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Airborne dust particles were collected in a return airway of a South African gold mine using a 7-stage, single-orifice cascade impactor. Between 70 and 130 individual particles were analysed on each stage using automated electron-probe x-ray microanalysis (EPXMA). Particle size and shape parameters are given for different classes of particles sorted by elemental composition. Silicon-rich particles are the most abundant overall, while chlorine-rich particles dominate (up to 80%) in the range 0.21.0 μm. It is shown that EPXMA characterisation of particles can be used to infer relative contributions of various particle sources and dust generating processes to the total dust concentrations in mine atmospheres. An understanding of the nature and source of particles is essential for any source control strategy. We conclude that the EPXMA technique merits inclusion in the repertoire of techniques used for characterising underground dust.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2004-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9031 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116777 Serial 7701  
Permanent link to this record
 

 
Author Yang, T. openurl 
  Title Characterization of Laves phase structural evolution and regulation of its precipitation behavior in Al-Zn-Mg based alloys Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages ii, 106 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract (up) Al-Zn-Mg-based high strength alloys are widely used in aerospace applications due to their low density and excellent mechanical properties. A systematic study of the structural evolution of the nano-precipitation phase and its growth mechanism is an important guide for the design of new high-strength alloys. In this work, the Laves structure precipitates in Al-Zn-Mg(-Cu/Y) alloy was systematically characterized. Based on the structure evolution, the structure of submicron Laves particles and quasicrystalline particles in the alloy at microscale, as well as the regulation of the precipitation behavior after adding Y at nanoscale were further investigated. The main innovative results are summarized as follows: (1) Investigation on coexistence of defect structures in Laves structural nanoprecipitates. Three types of Laves structures can coexist within the η-MgZn2 precipitates: C14, C15 and C36, and the Laves structure transition sequence of C14→C36→C15 in this system was determined. Meanwhile, it was found that there are diverse defect structures in the MgZn2 phase, including stacking faults, planar defects and five-fold domain structures, which have significant effects on relieving the internal stress/strain of the precipitates. (2) Investigation on multiple phase transition of Laves structural nanoprecipitates from C14 to C36 and from C14 to quasicrystal clusters. It is found that C14 precipitates can be completely transformed into the C36 precipitates. And it is also found that the C14 Laves phase structure can also transform into quasicrystalline clusters. These investigations on various phase transition mechanisms among Laves phases provide theoretical support for the microstructural characterization of materials containing multi-scale Laves phases. (3) Characterization of Laves and quasicrystal structural particles in submicron scale. Submicron-scale quasicrystal particles were obtained in conventional casting Al-Zn-Mg-Cu alloys for the first time. Industrial impurity elements Fe and Ni can induce the formation of quasicrystalline particles. When there is no Fe/Ni enriched in particles, the structure is characterized as C15-Laves phase. When Fe/Ni is as quasicrystalline core, a stable core-shell quasicrystalline structure with Al-Fe-Ni nucleus and Mg-Cu-Zn shell can be formed. (4) Investigation on the regulation of nanoscale Laves precipitates’ growth. To regulate the defect structure of the precipitates, rare earth element Y was added in Al-Zn-Mg alloys and its influence on the precipitation behavior was investigated. The addition of Y element can dynamically combine with different alloying elements during aging process, which can refine the size of precipitate and further improve the nucleation rate and precipitation rate of the precipitates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:196404 Serial 7631  
Permanent link to this record
 

 
Author Van Grieken, R. pdf  doi
openurl 
  Title Preconcentration methods for the analysis of water by X-ray spectrometric techniques Type A1 Journal article
  Year 1982 Publication Analytica chimica acta Abbreviated Journal  
  Volume 143 Issue Pages 3-34  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) All published procedures for multi-element preconcentration of trace elements, prior to x-ray fluorescence analysis of water, are reviewed and critically evaluated. Most preconcentration methods applied to the determination of single elements in water are also listed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1982PT27300002 Publication Date 2002-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116441 Serial 8401  
Permanent link to this record
 

 
Author Pandey, T.; Du, M.-H.; Parker, D.S.; Lindsay, L. pdf  doi
openurl 
  Title Origin of ultralow phonon transport and strong anharmonicity in lead-free halide perovskites Type A1 Journal article
  Year 2022 Publication Materials Today Physics Abbreviated Journal  
  Volume 28 Issue Pages 100881-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) All-inorganic lead-free halide double perovskites offer a promising avenue toward non-toxic, stable optoelec-tronic materials, properties that are missing in their prominent lead-containing counterparts. Their large ther-mopowers and high carrier mobilities also make them promising for thermoelectric applications. Here, we present a first-principles study of the lattice vibrations and thermal transport behaviors of Cs2SnI6 and gamma-CsSnI3, two prototypical compounds in this materials class. We show that conventional static zero temperature density functional theory (DFT) calculations severely underestimate the lattice thermal conductivities (kappa l) of these compounds, indicating the importance of dynamical effects. By calculating anharmonic renormalized phonon dispersions, we show that some optic phonons significantly harden with increasing temperature (T), which reduces the scattering of heat carrying phonons and enhances calculated kappa l values when compared with standard zero temperature DFT. Furthermore, we demonstrate that coherence contributions to kappa l, arising from wave like phonon tunneling, are important in both compounds. Overall, calculated kappa l with temperature-dependent inter-atomic force constants, built from particle and coherence contributions, are in good agreement with available measured data, for both magnitude and temperature dependence. Large anharmonicity combined with low phonon group velocities yield ultralow kappa l values, with room temperature values of 0.26 W/m-K and 0.72 W/m-K predicted for Cs2SnI6 and gamma-CsSnI3, respectively. We further show that the lattice dynamics of these compounds are highly anharmonic, largely mediated by rotation of the SnI6 octahedra and localized modes originating from Cs rattling motion. These thermal characteristics combined with their previously computed excellent electronic properties make these perovskites promising candidates for optoelectronic and room temperature thermoelectric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000876484300002 Publication Date 2022-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.5 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 11.5  
  Call Number UA @ admin @ c:irua:192139 Serial 7329  
Permanent link to this record
 

 
Author Matthieu, L.; Godoi, A.F.L.; Lambert, J.; Van Grieken, R. pdf  doi
openurl 
  Title Occupational allergic contact dermatitis from bisphenol A in vinyl gloves Type A1 Journal article
  Year 2003 Publication Contact dermatitis Abbreviated Journal  
  Volume 49 Issue 6 Pages 281-283  
  Keywords A1 Journal article; Translational Pathophysiological Research (TPR); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Allergic contact dermatitis caused by polyvinyl chloride gloves is rarely reported, and in only 2 cases was bisphenol A considered to be the responsible sensitizer. We report a patient with occupational hand dermatitis after the use of a new type of high-density vinyl (HDV) gloves. Patch tests showed positive (++) reactions to both used and new HDV gloves and to bisphenol A. Chemical analysis by gas chromatography-mass spectrometry demonstrated the presence of bisphenol A in the HDV gloves. Replacement by nitrile rubber gloves resulted in complete clearance of the hand dermatitis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000220740700003 Publication Date 2004-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0105-1873 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:45365 Serial 8324  
Permanent link to this record
 

 
Author Vervaet, B.A.; Nast, C.C.; Jayasumana, C.; Schreurs, G.; Roels, F.; Herath, C.; Kojc, N.; Samaee, V.; Rodrigo, S.; Gowrishankar, S.; Mousson, C.; Dassanayake, R.; Orantes, C.M.; Vuiblet, V.; Rigothier, C.; d' Haese, P.C.; de Broe, M.E. url  doi
openurl 
  Title Chronic interstitial nephritis in agricultural communities is a toxin induced proximal tubular nephropathy Type A1 Journal article
  Year 2019 Publication Kidney international Abbreviated Journal Kidney Int  
  Volume 97 Issue 97 Pages 350-369  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory Experimental Medicine and Pediatrics (LEMP); Pathophysiology  
  Abstract (up) Almost 30 years after the detection of chronic interstitial nephritis in agricultural communities (CINAC) its etiology remains unknown. To help define this we examined 34 renal biopsies from Sri Lanka, El Salvador, India and France of patients with chronic kidney disease 2-3 and diagnosed with CINAC by light and electron microscopy. In addition to known histopathology, we identified a unique constellation of proximal tubular cell findings including large dysmorphic lysosomes with a light-medium electron-dense matrix containing dispersed dark electron-dense non-membrane bound “aggregates”. These aggregates associated with varying degrees of cellular/tubular atrophy, apparent cell fragment shedding and no-weak proximal tubular cell proliferative capacity. Identical lysosomal lesions, identifiable by electron microscopy, were observed in 9% of renal transplant implantation biopsies, but were more prevalent in six month (50%) and 12 month (67%) protocol biopsies and in indication biopsies (76%) of calcineurin inhibitor treated transplant patients. The phenotype was also found associated with nephrotoxic drugs (lomustine, clomiphene, lithium, cocaine) and in some patients with light chain tubulopathy, all conditions that can be directly or indirectly linked to calcineurin pathway inhibition or modulation. One hundred biopsies of normal kidneys, drug/toxin induced nephropathies, and overt proteinuric patients of different etiologies to some extent could demonstrate the light microscopic proximal tubular cell changes, but rarely the electron microscopic lysosomal features. Rats treated with the calcineurin inhibitor cyclosporine for four weeks developed similar proximal tubular cell lysosomal alterations, which were absent in a dehydration group. Overall, the finding of an identical proximal tubular cell (lysosomal) lesion in CINAC and calcineurin inhibitor nephrotoxicity in different geographic regions suggests a common paradigm where CINAC patients undergo a tubulotoxic mechanism similar to calcineurin inhibitor nephrotoxicity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508449300020 Publication Date 2019-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0085-2538; 1523-1755 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.395 Times cited Open Access  
  Notes Approved Most recent IF: 8.395  
  Call Number UA @ admin @ c:irua:164305c:irua:166544 Serial 5384  
Permanent link to this record
 

 
Author Álvarez-Martín, A.; De Winter, S.; Nuyts, G.; Hermans, J.; Janssens, K.; van der Snickt, G. pdf  doi
openurl 
  Title Multi-modal approach for the characterization of resin carriers in Daylight Fluorescent Pigments Type A1 Journal article
  Year 2020 Publication Microchemical Journal Abbreviated Journal Microchem J  
  Volume 159 Issue Pages 105340  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract (up) Almost seventy years after artists such as Frank Stella (1936), Andy Warhol (1928-1987), James Rosenquist (1933-2017), Herb Aach (1923-1985) and Richard Bowman (1918-2001) started to incorporate Daylight Fluorescent Pigments (DFPs) in their artworks, the extent of the conservation problems that are associated with these pigments has increased progressively. Since their first appearance on the market, their composition has constantly been improved in terms of permanency. However, conservation practices on the artworks that are used in, are complicated by the fact that the composition of DFPs is proprietary and the information provided by the manufactures is limited. To be able to propose adequate conservation strategies for artworks containing DFPs, a thorough understanding of the DFPs composition must be acquired. In contrast with previous research that concentrated on identification of the coloring dye, this paper focuses on the characterization of the resin, used as the carrier for the dye. The proposed approach, involving ATR-FTIR, SPME-GC-MS and XRF analysis, provided additional insights on the organic and inorganic components of the resin. Using this approach, we investigated historical DFPs and new formulations, as well as different series from the main manufacturing companies (DayGlo, Swada, Radiant Color and Kremer) in order to obtain a full characterization of DFPs used by the artists along the years. First, the initial PCA-assisted ATR-FTIR spectroscopy allowed for an efficient classification of the main monomers in the resin polymer. Next, a further distinction was made by mass spectrometry and XRF which were optimized to allow a more specific classification of the resin and for detection of additives. In this paper we show the potential of SPME-GC-MS, never applied for the characterization of artistic materials, at present undervalued for heritage science purposes. We anticipate that this information will be highly relevant in the future stability studies and for defining (preventive) conservation strategies of fluorescent artworks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598761400009 Publication Date 2020-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access  
  Notes Approved Most recent IF: 4.8; 2020 IF: 3.034  
  Call Number UA @ admin @ c:irua:175083 Serial 8286  
Permanent link to this record
 

 
Author Poulain, R.; Lumbeeck, G.; Hunka, J.; Proost, J.; Savolainen, H.; Idrissi, H.; Schryvers, D.; Gauquelin, N.; Klein, A. pdf  doi
openurl 
  Title Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism Type A1 Journal article
  Year 2022 Publication ACS applied electronic materials Abbreviated Journal  
  Volume 4 Issue 6 Pages 2718-2728  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Although largely studied, contradictory results on nickel oxide (NiO) properties can be found in the literature. We herein propose a comprehensive study that aims at leveling contradictions related to NiO materials with a focus on its conductivity, surface properties, and the intrinsic charge defects compensation mechanism with regards to the conditions preparation. The experiments were performed by in situ photo-electron spectroscopy, electron energy loss spectroscopy, and optical as well as electrical measurements on polycrystalline NiO thin films prepared under various preparation conditions by reactive sputtering. The results show that surface and bulk properties were strongly related to the deposition temperature with in particular the observation of Fermi level pinning, high work function, and unstable oxygen-rich grain boundaries for the thin films produced at room temperature but not at high temperature (>200 degrees C). Finally, this study provides substantial information about surface and bulk NiO properties enabling to unveil the origin of the high electrical conductivity of room temperature NiO thin films and also for supporting a general electronic charge compensation mechanism of intrinsic defects according to the deposition temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000819431200001 Publication Date 2022-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189555 Serial 7081  
Permanent link to this record
 

 
Author Wang, L.; Shi, P.; Chen, L.; Gielis, J.; Niklas, K.J. pdf  url
doi  openurl
  Title Evidence that Chinese white olive (Canarium album(Lour.) DC.) fruits are solids of revolution Type A1 Journal article
  Year 2023 Publication Botany letters Abbreviated Journal  
  Volume Issue Pages 1-7  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) Although many fruit geometries resemble a solid of revolution, this assumption has rarely been rigorously examined. To test this assumption, 574 fruits of Canarium album (Lour.) DC. which appear to have an ellipsoidal shape, were examined to determine the validity of a general avian-based egg-shape equation, referred to as the explicit Preston equation (EPE). The assumption that the C. album fruit geometry is a solid of revolution is tested by applying the volume formula for a solid of revolution using the EPE. The goodness of fit of the EPE was assessed using the adjusted root-mean-square error (RMSEadj). The relationship between the observed volume (Vobs) of each fruit, as measured by water displacement in a graduated cylinder, and the predicted volumes (Vpre) based on the EPE was also evaluated using the equation Vpre = slope * Vobs. All the RMSEadj values were smaller than 0.05, which demonstrated the validity of the EPE based on C. album fruit profiles. The 95% confidence interval of the slope of Vpre vs. Vobs included 1.0, indicating that there was no significant difference between Vpre and Vobs. The data confirm that C. album fruits are solids of revolution. This study provides a new approach for calculating the volume and surface area of geometrically similar fruits, which can be extended to other species with similar fruit geometries to further explore the ontogeny and evolution of angiosperm reproductive organs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033135400001 Publication Date 2023-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2381-8107; 2381-8115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.5 Times cited Open Access Not_Open_Access: Available from 24.01.2024  
  Notes Approved Most recent IF: 1.5; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:198001 Serial 8864  
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C. pdf  url
doi  openurl
  Title Identification of a unique pyridinic FeN4Cx electrocatalyst for N₂ reduction : tailoring the coordination and carbon topologies Type A1 Journal article
  Year 2022 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 126 Issue 34 Pages 14460-14469  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Although the heterogeneity of pyrolyzed Fe???N???C materials is known and has been reported previously, the atomic structure of the active sites and their detailed reaction mechanisms are still unknown. Here, we identified two pyridinic Fe???N4-like centers with different local C coordinates, i.e., FeN4C8 and FeN4C10, and studied their electrocatalytic activity for the nitrogen reduction reaction (NRR) based on density functional theory (DFT) calculations. We also discovered the influence of the adsorption of NH2 as a functional ligand on catalyst performance on the NRR. We confirmed that the NRR selectivity of the studied catalysts is essentially governed either by the local C coordination or by the dynamic structure associated with the FeII/FeIII. Our investigations indicate that the proposed traditional pyridinic FeN4C10 has higher catalytic activity and selectivity for the NRR than the robust FeN4C8 catalyst, while it may have outstanding activity for promoting other (electro)catalytic reactions. <comment>Superscript/Subscript Available</comment  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000859545200001 Publication Date 2022-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:191469 Serial 7268  
Permanent link to this record
 

 
Author Derks, K.; van der Snickt, G.; Legrand, S.; van der Stighelen, K.; Janssens, K. url  doi
openurl 
  Title The dark halo technique in the oeuvre of Michael Sweerts and other Flemish and Dutch baroque painters. A 17th c. empirical solution to mitigate the optical 'simultaneous contrast' effect? Type A1 Journal article
  Year 2022 Publication Heritage science Abbreviated Journal  
  Volume 10 Issue 1 Pages 5  
  Keywords A1 Journal article; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract (up) Although the topic is rarely addressed in literature, a significant number of baroque paintings exhibit dark, halo-like shapes around the contours of the dramatis personae. Close examination of both finished and unfinished works suggests that this intriguing feature was a practical tool that helped the artist in the early painting stages. When applying the final brushwork, the halo lost its function, with some artists undertaking efforts to hide it. Although their visibility might not have been intended by the artists, today this dark paint beneath the surface is partially visible through the upper paint layers. Moreover, the disclosure of many halos using infrared photography (IRP), infrared reflectography (IRR) and macro X-ray fluorescence imaging (MA-XRF), additional to those that can be observed visually, suggests that this was a common and established element of 17th-century painting practice in Western Europe. Building on an existing hypothesis, we argue that halos can be considered as a solution to an optical problem that arose when baroque painters reversed the traditional, 15th- and 16th-century painting sequence of working from background to foreground. Instead, they started with the dominant parts of a composition, such as the face of a sitter. In that case, a temporary halo can provide the essential tonal reference to anticipate the chromatic impact of the final dark colored background on the adjacent delicate carnations. In particular, we attempt to clarify the prevalence of dark halos as a response to optical effects such as 'simultaneous contrast' and 'the crispening effect', described in literature only centuries later. As such, the recently termed 'ring condition' can be seen as the present-day equivalent of the 'halo solution' that was seemingly empirically or intuitively developed by 17th-century artists. Modern studies in visual perception proves that by laying a black ring around a target color, the optical impact of a surrounding color can be efficiently neutralized. Finally, by delving into works by Michael Sweerts, it becomes clear that resourceful artists might have adapted the halo technique and the underlying principles to their individual challenges, such as dealing with differently colored grounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000739965700001 Publication Date 2022-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.5  
  Call Number UA @ admin @ c:irua:185458 Serial 7217  
Permanent link to this record
 

 
Author Meng, X.; Chen, S.; Peng, H.; Bai, H.; Zhang, S.; Su, X.; Tan, G.; Van Tendeloo, G.; Sun, Z.; Zhang, Q.; Tang, X.; Wu, J. pdf  doi
openurl 
  Title Ferroelectric engineering : enhanced thermoelectric performance by local structural heterogeneity Type A1 Journal article
  Year 2022 Publication Science China : materials Abbreviated Journal Sci China Mater  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Although traditional ferroelectric materials are usually dielectric and nonconductive, GeTe is a typical ferroelectric semiconductor, possessing both ferroelectric and semiconducting properties. GeTe is also a widely studied thermoelectric material, whose performance has been optimized by doping with various elements. However, the impact of the ferroelectric domains on the thermoelectric properties remains unclear due to the difficulty to directly observe the ferroelectric domains and their evolutions under actual working conditions where the material is exposed to high temperatures and electric currents. Herein, based on in-situ investigations of the ferroelectric domains and domain walls in both pure and Sb-doped GeTe crystals, we have been able to analyze the dynamic evolution of the ferroelectric domains and domain walls, exposed to an electric field and temperature. Local structural heterogeneities and nano-sized ferroelectric domains are generated due to the interplay of the Sb3+ dopant and the Ge-vacancies, leading to the increased number of charged domain walls and a much improved thermoelectric performance. This work reveals the fundamental mechanism of ferroelectric thermoelectrics and provides insights into the decoupling of previously interdependent properties such as thermo-power and electrical conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000749973500001 Publication Date 2022-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-8226; 2199-4501 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.1  
  Call Number UA @ admin @ c:irua:186429 Serial 6959  
Permanent link to this record
 

 
Author van 't Veer, K.C. url  openurl
  Title Plasma kinetics modelling of nitrogen fixation : ammonia synthesis in dielectric barrier discharges with catalysts Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 241 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Ammonia (NH3) synthesis is crucial for the production of artificial fertilizer and is carried out through the Haber-Bosch process. With an energy consumption of 30 GJ/t-NH3 and the emission of 2 kg-CO2/kg-NH3, ammonia is the chemical with the largest environmental footprint. Haber-Bosch operates under high pressure and high temperature conditions. Plasma technology potentially allows greener ammonia production. Dielectric barrier discharges are a popular plasma source in which a catalyst is easily incorporated. The combination of plasma and catalyst can circumvent the harsh reaction conditions of the Haber-Bosch process. Plasma kinetics modelling is used to gain insight into the mechanisms of such plasma-catalytic systems. Special attention is given to the instantaneous power absorbed by the electrons, the relevant fraction of the microdischarges and the discharge volumes. The importance of vibrational excitation is investigated. Depending on the exact discharge conditions, it was found that both the strong microdischarges and vibrational excitation can be simultaneously important for the ammonia yield. The temporal behavior of filamentary dielectric barrier discharges was explicitly taken into account. Ammonia was found to decompose during the microdischarges due to electron impact dissociation. At the same time atomic nitrogen and other excited species are created. Those reactive species recombine to ammonia in the afterglow through various elementary Eley-Rideal and Langmuir-Hinshelwood surface reaction steps with a net ammonia gain. Finally, the concept of the fraction of microdischarges was generalized. It directly represents the efficiency with which the applied electric power is transferred to each individual particle in the plasma reactor. It is argued that any type of spatial or temporal non-uniformity of the plasma will cause unequal treatment of the gas molecules in the reactor, corresponding to a lower efficiency at which the power is transferred to the gas molecules. All of those insights aid in an increased understanding of plasma-catalytic ammonia synthesis as a potential green chemistry solution to the synthesis of ammonia on small scale.    
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188246 Serial 7193  
Permanent link to this record
 

 
Author Otten, P.; Bruynseels, F.; Van Grieken, R. pdf  doi
openurl 
  Title Study of inorganic ammonium compounds in individual marine aerosol particles by laser microprobe mass spectrometry Type A1 Journal article
  Year 1987 Publication Analytica chimica acta Abbreviated Journal  
  Volume 195 Issue Pages 117-124  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Ammonia is important in the atmosphere because it neutralizes acidic species. The relative importance of different inorganic ammonium compounds (chloride, nitrate and sulfate) in marine air chemistry was studied by single-particle characterization with the laser microprobe mass analyser. Standard aerosols were generated as a reference for compound identification, based on the fingerprint spectra obtained, and calculation of the relative sensitivity achieved for different ions in a marine aerosol matrix. The relative sensitivity for ammonium was low. Aerosol samples were collected in the Southern Bight of the North Sea under different meteorological conditions and examined for their ammonium compounds. Samples collected during an inversion period with continental influences showed a much higher content in all particles than samples collected under different meteorological conditions, where ammonium was mostly detected in the submicrometer particle-size range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1987K019500010 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116447 Serial 8601  
Permanent link to this record
 

 
Author Grunert, O.; Robles Aguilar, A.A.; Hernandez-Sanabria, E.; Reheul, D.; Vlaeminck, S.E.; Boon, N.; Jablonowski, N.D. openurl 
  Title Fertilizer type influences dynamics of the microbial community structure in the rhizosphere of tomato and impact the nutrient turnover and plant performance Type A2 Journal article
  Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume 81 Issue 1 Pages 67-73  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) Ammonia-oxidizing microorganisms (AOB and AOA) and nitrite oxidizing bacteria (NOB) are the most important organisms responsible for ammonia and nitrite oxidation in agricultural ecosystems and growing media. Ammonia and nitrite oxidation are critical steps in the soil nitrogen cycle and can be affected by the application of mineral fertilizers or organic fertilizers. The functionality of the microbial community has a major impact on the nutrient turnover and will finally influence plant performance. The microbial community associated with the growing medium and its functionality will also be influenced by the rhizosphere and the bulk soil. In our study, we used a tomato plant with a high root exudation capacity in order to stimulate microbial activity. We studied plant performance in rhizotrons (a phentotyping system for imaging roots), including an optical method (planar optodes) for non-invasive, quantitative and high-resolution imaging of pH dynamics in the rhizosphere and adjacent medium. The horticultural growing medium was supplemented with organic-derived nitrogen or ammonium derived from struvite. The possible differences in the root structure between treatments is compared with the total root length. Destructive growing medium sampling and high throughput sequencing analysis of the bacterial abundance of the communities present in the rhizosphere and the bulk soil is used to study the growing medium-associated microbial community structure and functionality, and this will be related to pH changes in the rhizosphere and the bulk soil. Our hypothesis is that the growing medium-associated microbial community structure changes depending on the nitrogen form provided and we expect a higher abundance of bacteria in the treatment with organic fertilizer and a higher abundance of AOB and NOB in the rhizosphere in comparison to the bulk soil.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1379-1176 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151149 Serial 7964  
Permanent link to this record
 

 
Author Hao, Y. url  openurl
  Title A joint experimental-modeling study of the structure and properties of functional molecular monolayers for the control of organic crystal growth Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages xiii, 174 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Among all types of discovered crystals, those formed by organic molecules show the greatest diversity, which results from the intrinsic complexity of the organic molecules and the weak interactions between them. Even for a given compound, different crystal structures can exist. This feature is referred to as polymorphism in the modern crystallographic context and those different crystal forms are called polymorphs. In reality, the crystallization of organic molecules is often performed at the surface of a substrate, giving rise to heterogeneous crystallization. Except for the well-known catalyzing effects, the existence of substrates brings more possibilities to the polymorphic behaviors of organic molecules, promoting the formation of new polymorphs that are only stable in the vicinity of the substrates. For this reason, these new polymorphic forms are often described as substrate-induced polymorphs (SIPs). It is of great importance to understand the formation of SIPs for organic molecules as it has been reported that SIPs can show superior properties with respect to their bulk form counterparts. Up to now, most studies focus on the identifying and characterizing the presence of SIPs, which relies mainly on X-ray diffraction techniques. However, a detailed explanation about the origin of SIPs is still missing. In this work, we have combined several powerful experimental characterization techniques, including X-ray diffraction, transmission electron microscopy (TEM) and scanning tunneling microscopy (STM) in order to reach an integrated view over the formation of SIPs. These experimental studies are strongly supported by computational chemistry simulations, such as density functional theory and molecular dynamics. A big advantage of using atomistic simulations is that it enables the possibility to predict a priori the crystal structures of SIPs and to establish a posteriori the general rules for the formation of SIPs. In practice, this thesis employs state-of-art atomistic simulation approaches in order to bridge substrate-induced polymorphism with a conceptually-connected research area: the self-assembly of molecular networks (SAMNs), also called 2D crystallization. Unlike SIPs, which extend at least several molecular layers, SAMNs are composed of a single layer of molecules with ordered packing. Our simulations have enabled a more comprehensive understanding about the role of substrate during the formation of SIPs and we elucidate how the positional and orientational order of molecules propagates from the substrate to the upper 2D and even 3D crystal layers. In this way, a fundamental understanding of the substrate-induced crystallization is gained by connecting 2D and 3D crystallization using substrate-induced approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:191758 Serial 7176  
Permanent link to this record
 

 
Author Quintelier, M.; Perkisas, T.; Poppe, R.; Batuk, M.; Hendrickx, M.; Hadermann, J. url  doi
openurl 
  Title Determination of spinel content in cycled Li1.2Ni0.13Mn0.54Co0.13O2 using three-dimensional electron diffraction and precession electron diffraction Type A1 Journal article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 11 Pages 1989-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract (up) Among lithium battery cathode materials, Li1.2Ni0.13Mn0.54Co0.13O2 (LR-NMC) has a high theoretical capacity, but suffers from voltage and capacity fade during cycling. This is partially ascribed to transition metal cation migration, which involves the local transformation of the honeycomb layered structure to spinel-like nano-domains. Determination of the honeycomb layered/spinel phase ratio from powder X-ray diffraction data is hindered by the nanoscale of the functional material and the domains, diverse types of twinning, stacking faults, and the possible presence of the rock salt phase. Determining the phase ratio from transmission electron microscopy imaging can only be done for thin regions near the surfaces of the crystals, and the intense beam that is needed for imaging induces the same transformation to spinel as cycling does. In this article, it is demonstrated that the low electron dose sufficient for electron diffraction allows the collection of data without inducing a phase transformation. Using calculated electron diffraction patterns, we demonstrate that it is possible to determine the volume ratio of the different phases in the particles using a pair-wise comparison of the intensities of the reflections. Using this method, the volume ratio of spinel structure to honeycomb layered structure is determined for a submicron sized crystal from experimental three-dimensional electron diffraction (3D ED) and precession electron diffraction (PED) data. Both twinning and the possible presence of the rock salt phase are taken into account. After 150 charge-discharge cycles, 4% of the volume in LR-NMC particles was transformed irreversibly from the honeycomb layered structure to the spinel structure. The proposed method would be applicable to other multi-phase materials as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000815310500001 Publication Date 2021-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.457 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.457  
  Call Number UA @ admin @ c:irua:189468 Serial 7080  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: