|   | 
Details
   web
Records
Author van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S.
Title Proof of concept of an upscaled photocatalytic multi-tube reactor : a combined modelling and experimental study Type A1 Journal article
Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 378 Issue 378 Pages 122038
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Three upscaled multi-tube photocatalytic reactors designed for integration into HVAC (Heating, Ventilation and Air Conditioning) systems were proposed and evaluated using a CFD modelling approach, with emphasis on the flow, irradiation and concentration distribution in the reactor and hence, photocatalytic performance. Based on the obtained insights, the best reactor design was selected, further characterized and improved by an additional proof of concept study and eventually converted into practice. Subsequently, the scaled-up prototype was experimentally tested according to the CEN-EN-16846-1 standard (2017) for volatile organic compound (VOC) removal by an external scientific research center. The combined modelling and experimental approach used in this work, leads to essential insights into the design and assessment of photocatalytic reactors. Therefore, this study provides an essential step towards the optimization and commercialization of photocatalytic reactors for HVAC applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000487764800011 Publication Date 2019-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited Open Access
Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. ; Approved Most recent IF: 6.216
Call Number UA @ admin @ c:irua:162190 Serial 5986
Permanent link to this record
 

 
Author Nerantzaki, M.; Filippousi, M.; Van Tendeloo, G.; Terzopoulou, Z.; Bikiaris, D.; Goudouri, O.M.; Detsch, R.; Grueenewald, A.; Boccaccini, A.R.
Title Novel poly(butylene succinate) nanocomposites containing strontium hydroxyapatite nanorods with enhanced osteoconductivity for tissue engineering applications Type A1 Journal article
Year 2015 Publication Express polymer letters Abbreviated Journal Express Polym Lett
Volume 9 Issue 9 Pages 773-789
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Three series of poly(butylene succinate) (PBSu) nanocomposites containing 0.5, 1 and 2.5 wt% strontium hydroxyapatite [Sr-5(PO4)(3)OH] nanorods (SrHAp nrds) were prepared by in situ polymerisation. The structural effects of Sr-5(PO4)(3)OH nanorods, for the different concentrations, inside the polymeric matrix (PBSu), were studied through high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). HAADF-STEM measurements revealed that the SrHAp nanorods at low concentrations are dispersed inside the polymeric PBSu matrix while in 1 wt% some aggregates are formed. These aggregations affect the mechanical properties giving an enhancement for the concentration of 0.5 wt% SrHAp nrds in tensile strength, while a reduction is recorded for higher loadings of the nanofiller. Studies on enzymatic hydrolysis revealed that all nanocomposites present higher hydrolysis rates than neat PBSu, indicating that nanorods accelerate the hydrolysis degradation process. In vitro bioactivity tests prove that SrHAp nrds promote the formation of hydroxyapatite on the PBSu surface. All nanocomposites were tested also in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility showing SrHAp nanorods support cell attachment.
Address
Corporate Author Thesis
Publisher Budapest University of Technology and Economics Department of Polymer Engineering Place of Publication Budapest, Hungary Editor
Language Wos 000357287800004 Publication Date 2015-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1788-618X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.983 Times cited 21 Open Access
Notes 262348 Esmi Approved Most recent IF: 2.983; 2015 IF: 2.761
Call Number c:irua:127009 Serial 2382
Permanent link to this record
 

 
Author Charkin, D.O.; Urmanov, A.V.; Kazakov, S.M.; Batuk, D.; Abakumov, A.M.; Knöner, S.; Gati, E.; Wolf, B.; Lang, M.; Shevelkov, A.V.; Van Tendeloo, G.; Antipov, E.V.;
Title Synthesis, crystal structure, transport, and magnetic properties of novel ternary copper phosphides, A2Cu6P5(A = Sr, Eu) and EuCu4P3 Type A1 Journal article
Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 51 Issue 16 Pages 8948-8955
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Three new ternary copper phosphides, Sr2Cu6P5, Eu2Cu6P5, and EuCu4P3, have been synthesized from the elements in evacuated silica capsules. Eu2Cu6P5 and Sr2Cu6P5 adopt the Ca2Cu6P5-type structure, while EuCu4P3 is isostructural to BaMg4Si3 and still remains the only representative of this structure type among the ternary Cu pnictides. All three materials show metallic conductivity in the temperature range 2 K <= T <= 290 K, with no indication for superconductivity. For Eu2Cu6P5 and EuCu4P3, long-range magnetic order was observed, governed by 4f local moments on the Eu atoms with predominant ferromagnetic interactions. While Eu2Cu6P5 shows a single ferromagnetic transition at T-C = 34 K, the magnetic behavior of EuCu4P3 is more complex, giving rise to three consecutive magnetic phase transitions at 70, 43, and 18 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000307606200042 Publication Date 2012-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 13 Open Access
Notes Approved Most recent IF: 4.857; 2012 IF: 4.593
Call Number UA @ lucian @ c:irua:102217 Serial 3453
Permanent link to this record
 

 
Author Winckelmans, N.; Altantzis, T.; Grzelczak, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Bals, S.
Title Multimode Electron Tomography as a Tool to Characterize the Internal Structure and Morphology of Gold Nanoparticles Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 122 Pages 13522-13528
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Three dimensional (3D) characterization of structural defects in nanoparticles by transmission electron microscopy is far from straightforward. We propose the use of a dose-efficient approach, so-called multimode tomography, during which tilt series of low and high angle annular dark field scanning transmission electron microscopy projection images are acquired simultaneously. In this manner, not only reliable information can be obtained concerning the shape of the nanoparticles, but also the twin planes can be clearly visualized in 3D. As an example, we demonstrate the application of this approach to identify the position of the seeds with respect to the twinning planes in anisotropic gold nanoparticles synthesized using a seed mediated growth approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000437811500036 Publication Date 2018-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 23 Open Access OpenAccess
Notes S.B. and N.W. acknowledge funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant No. 335078 COLOURATOM. S.B. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N and G.0218.14N) and a postdoctoral research grant to T.A. L.M.L.-M. and M.G. acknowledge funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013-46101-R). L.M.L.-M. and S.B. acknowledge funding from the European Commission (grant EUSMI 731019). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.536
Call Number EMAT @ emat @c:irua:148164UA @ admin @ c:irua:148164 Serial 4807
Permanent link to this record
 

 
Author Chernov, S.V.; Dobrovolsky, Y.A.; Istomin, S.Y.; Antipov, E.V.; Grins, J.; Svensson, G.; Tarakina, N.V.; Abakumov, A.M.; Van Tendeloo, G.; Eriksson, S.G.; Rahman, S.M.H.;
Title _Sr{2}GaScO5, Sr10Ga6Sc4O25, and SrGa0.75Sc0.25O2.5 : a play in the octahedra to tetrahedra ratio in oxygen-deficient perovskites Type A1 Journal article
Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 51 Issue 2 Pages 1094-1103
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Three different perovskite-related phases were isolated in the SrGa(1-x)Sc(x)O(2.5) system: Sr(2)GaScO(5), Sr(10)Ga(6)Sc(4)O(25), and SrGa(0.75)Sc(0.25)O(2.5), Sr(2)GaScO(5) (x = 0.5) crystallizes in a brownrnillerite-type structure [space group (S.G.) Icmm, a = 5.91048(5) angstrom, b = 15.1594(1) angstrom, and c = 5.70926(4) angstrom] with complete ordering of Sc(3+) and Ga(3+) over octahedral and tetrahedral positions, respectively. The crystal structure of Sr(10)Ga(6)Sc(4)O(25) (x = 0.4) was determined by the Monte Carlo method and refined using a combination of X-ray, neutron, and electron diffraction data [S.G. I4(1)/a, a = 17.517(1) angstrom, c = 32.830(3) angstrom]. It represents a novel type of ordering of the B cations and oxygen vacancies in perovskites. The crystal structure of Sr(10)Ga(6)Sc(4)O(25) can be described as a stacking of eight perovskite layers along the c axis ...[-(Sc/Ga)O(1.6)-SrO(0.8)-(Sc/Ga)O(1.8)-SrO(0.8)-](2 center dot center dot center dot) Similar to Sr(2)GaScO(5), this structure features a complete ordering of the Sc(3+) and Ga(3+) cations over octahedral and tetrahedral positions, respectively, within each layer. A specific feature of the crystal structure of Sr(10)Ga(6)Sc(4)O(25) is that one-third of the tetrahedra have one vertex not connected with other Sc/Ga cations. Further partial replacement of Sc(3+) by Ga(3+) leads to the formation of the cubic perovskite phase SrGa(0.75)Sc(0.25)O(2.5) (x = 0.25) with a = 3.9817(4) angstrom. This compound incorporates water molecules in the structure forming SrGa(0.75)Sc(0.25)O(2.5)center dot xH(2)O hydrate, which exhibits a proton conductivity of similar to 2.0 x 10(-6) S/cm at 673 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000299028800042 Publication Date 2011-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 14 Open Access
Notes Approved Most recent IF: 4.857; 2012 IF: 4.593
Call Number UA @ lucian @ c:irua:96229 Serial 3559
Permanent link to this record
 

 
Author Maignan, A.; Martin, C.; Van Tendeloo, G.; Hervieu, M.; Raveau, B.
Title Size mismatch : a crucial factor for generating a spin-glass insulator in manganites Type A1 Journal article
Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 60 Issue 22 Pages 15214-15219
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Thr structural, electronic, and magnetic properties of the highly mismatched perovskite oxides, Th(0.35)A(0.65)MnO(3), where Ais for the alkaline earth divalent cations (Ca, Ba, Sr), which are all characterized by the same large tolerance factor (t=0.934), have been investigated by using electron microscopy, electrical resistivity, magnetic susceptibility, and magnetization. It is clearly established that a transition from ferromagnetic metallic towards spin-glass insulator samples is induced as the A-site cationic size mismatch is increased. Moreover, the magnetoresistance (MR) properties of these manganites are strongly reduced for the spin-glass insulators, demonstrating that the A-sire cationic disorder is detrimental for the colossal MR properties. Based on these results, a new electronic and magnetic diagram is established that shows that the A-site disorder, rather than the A-site average cationic size (or t) is the relevant factor for generating spin-glass insulating manganites. [S0163-1829(99)01746-4].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000084631600039 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 75 Open Access
Notes Approved Most recent IF: 3.836; 1999 IF: NA
Call Number UA @ lucian @ c:irua:104280 Serial 3038
Permanent link to this record
 

 
Author Horemans, B.; Van Grieken, R.
Title Speciation and diurnal variation of thoracic, fine thoracic and sub-micrometer airborne particulate matter at naturally ventilated office environments Type A1 Journal article
Year 2010 Publication Atmospheric environment : an international journal Abbreviated Journal
Volume 44 Issue 12 Pages 1497-1505
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Thoracic (PM10), fine thoracic (PM2.5) and sub-micrometer (PM1) airborne particulate matter was sampled during day and night. In total, about 100 indoor and outdoor samples were collected for each fraction at ten different office environments. Energy-dispersive X-ray fluorescence spectrometry and ion chromatography were applied for the quantification of some major and minor elements and ions in the collected aerosols. During daytime, mass concentrations were in the ranges: 1129, 8.124, and 6.618 μg m−3, with averages of 20 ± 1, 15.0 ± 0.9, and 11.0 ± 0.8 μg m−3, respectively. At night, mass concentrations were found to be significantly lower for all fractions. Indoor PM1 concentrations exceeded the corresponding outdoor levels during office hours and were thought to be elevated by office printers. Particles with diameters between 1 and 2.5 μm and 2.5 and 10 μm were mainly associated with soil dust elements and were clearly subjected to distinct periods of settling/resuspension. Indoor NO3 − levels were found to follow specific microclimatic conditions at the office environments, while daytime levels of sub-micrometer Cl− were possibly elevated by the use of Cl-containing cleaning products. Indoor carbon black concentrations were sometimes as high as 22 μg m−3 and were strongly correlated with outdoor traffic conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000276681100003 Publication Date 2010-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:81242 Serial 8569
Permanent link to this record
 

 
Author Romero-Pastor, J.; Duran, A.; Rodríguez-Navarro, A.B.; Van Grieken, R.; Cardell, C.
Title Compositional and quantitative microtextural characterization of historic paintings by micro-X-ray diffraction and Raman microscopy Type A1 Journal article
Year 2011 Publication Analytical chemistry Abbreviated Journal
Volume 83 Issue 22 Pages 8420-8428
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) This work shows the benefits of characterizing historic paintings via compositional and microtextural data from micro-X-ray diffraction (μ-XRD) combined with molecular information acquired with Raman microscopy (RM) along depth profiles in paint stratigraphies. The novel approach was applied to identify inorganic and organic components from paintings placed at the 14th century Islamic UniversityMadrasah Yusufiyyain Granada (Spain), the only Islamic University still standing from the time of Al-Andalus (Islamic Spain). The use of μ-XRD to obtain quantitative microtextural information of crystalline phases provided by two-dimensional diffraction patterns to recognize pigments nature and manufacture, and decay processes in complex paint cross sections, has not been reported yet. A simple Nasrid (14th century) palette made of gypsum, vermilion, and azurite mixed with glue was identified in polychromed stuccos. Here also a Christian intervention was found via the use of smalt, barite, hematite, Brunswick green and gold; oil was the binding media employed. On mural paintings and wood ceilings, more complex palettes dated to the 19th century were found, made of gypsum, anhydrite, barite, dolomite, calcite, lead white, hematite, minium, synthetic ultramarine blue, and black carbon. The identified binders were glue, egg yolk, and oil.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000296830200011 Publication Date 2011-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:92679 Serial 7715
Permanent link to this record
 

 
Author Ortiz-Aguayo, D.; De Wael, K.; del Valle, M.
Title Voltammetric sensing using an array of modified SPCE coupled with machine learning strategies for the improved identification of opioids in presence of cutting agents Type A1 Journal article
Year 2021 Publication Journal Of Electroanalytical Chemistry Abbreviated Journal J Electroanal Chem
Volume 902 Issue Pages 115770
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (down) This work reports the use of modified screen-printed carbon electrodes (SPCEs) for the identification of three drugs of abuse and two habitual cutting agents, caffeine and paracetamol, combining voltammetric sensing and chemometrics. In order to achieve this goal, codeine, heroin and morphine were subjected to Square Wave Voltammetry (SWV) at pH 7, in order to elucidate their electrochemical fingerprints. The optimized SPCEs electrode array, which have a differentiated response for the three oxidizable compounds, was derived from Carbon, Prussian blue, Cobalt (II) phthalocyanine, Copper (II) oxide, Polypyrrole and Palladium nanoparticles ink-modified carbon electrodes. Finally, Principal Component Analysis (PCA) coupled with Silhouette parameter assessment was used to select the most suitable combination of sensors for identification of drugs of abuse in presence of cutting agents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000714415500006 Publication Date 2021-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.012 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.012
Call Number UA @ admin @ c:irua:184018 Serial 8745
Permanent link to this record
 

 
Author Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Abakumov, A.M.; Gaskov, A.M.
Title Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots Type A1 Journal article
Year 2014 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 205 Issue Pages 305-312
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) This work reports the study of photoconductivity and visible light activated room temperature gas sensors properties of nanocrystalline ZnO thick films sensitized with colloidal CdSe quantum dots (QDs). Nanocrystalline zinc oxide (ZnO) was synthesized by the precipitation method. Colloidal CdSe quantum dots were obtained by high temperature colloidal synthesis. Sensitization was effectuated by three different procedures including direct adsorption of CdSe QDs stabilized with oleic acid on ZnO surface, anchoring to the ZnO surface through a bifunctional molecule of mercaptopropionic acid (MPA), and coating of CdSe QDs with a monolayer of MPA with subsequent adsorption on ZnO surface. Sensor measurements demonstrated that obtained QD CdSe/ZnO nanocomposites can be used for NO2 detection under visible (green) light illumination at room temperature without any thermal heating. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000343117600041 Publication Date 2014-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 36 Open Access
Notes Approved Most recent IF: 5.401; 2014 IF: 4.097
Call Number UA @ lucian @ c:irua:121107 Serial 3848
Permanent link to this record
 

 
Author Lopes, F.; Lima, A.; Pires de Matos, A.; Custódio, J.; Cagno, S.; Schalm, O.; Janssens, K.
Title Characterization of 18th century Portuguese glass from Real Fábrica de Vidros de Coina Type A1 Journal article
Year 2017 Publication Journal of Archaeological Science: Reports Abbreviated Journal
Volume 14 Issue Pages 137-145
Keywords A1 Journal article; Engineering sciences. Technology; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract (down) This work reports the first systematic chemical characterization of Portuguese 18th century glassware. 28 selected glass fragments, recovered from an archaeological excavation carried out in the site where King D. João V of Portugal established an important glass manufacture, Real Fábrica de Vidros de Coina (Coina Royal Glass Factory), were studied. This factory operated from 1719 until 1747, the year in which the factory was transferred to Marinha Grande. The fragments were analysed by micro-energy dispersive X-ray fluorescence (micro-EDXRF), using a portable spectrometer ArtTAX, and scanning electron microscopy (SEM-EDX). The analytical data showed that a large variety of glass types was manufactured in that factory, namely soda-lime glass, mixed-alkali glass, high lime-low alkali glass, potash glass and lead glass. In general, the composition of the glass varies according to the function of the objects. It was demonstrated that micro-EDXRF can be an important tool to characterize museum glass objects when only in situ non-invasive analytical methods are allowed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000415616700015 Publication Date 2017-05-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-409x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes ; This study was supported by FCT (Fundacao para a Ciencia e a Tecnologia) under the project POCI/HAR/55882/2004 and UID/EAT/00729/2013. The PhD grant SFRH/BD/ 85329/2012 by FCT to Filipa Lopes is also acknowledged. The authors are grateful to Rosario Gil and Camara Municipal do Barreiro for their help in accessing the archaeological glass collection. We would like to thank in particular Manuela Almeida Ferreira for her valuable support in this project. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:143545 Serial 5500
Permanent link to this record
 

 
Author Ehirim, T.J.; Ozoemena, O.C.; Mwonga, P.V.; Haruna, A.B.; Mofokeng, T.P.; De Wael, K.; Ozoemena, K.I.
Title Onion-like carbons provide a favorable electrocatalytic platform for the sensitive detection of tramadol drug Type A1 Journal article
Year 2022 Publication ACS Omega Abbreviated Journal
Volume 7 Issue 51 Pages 47892-47905
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (down) This work reports the first study on the possible application of nanodiamond-derived onion-like carbons (OLCs), in comparison with conductive carbon black (CB), as an electrode platform for the electrocatalytic detection of tramadol (an important drug of abuse). The physicochemical properties of OLCs and CB were determined using X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA). The OLC exhibits, among others, higher surface area, more surface defects, and higher thermal stability than CB. From the electrochemical analysis (interrogated using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy), it is shown that an OLC-modified glassy carbon electrode (GCE-OLC) allows faster electron transport and electrocatalysis toward tramadol compared to a GCE-CB. To establish the underlying science behind the high performance of the OLC, theoretical calculations (density functional theory (DFT) simulations) were conducted. DFT predicts that OLC allows for weaker surface binding of tramadol (Ead = -26.656 eV) and faster kinetic energy (K.E. = -155.815 Ha) than CB (Ead = -40.174 eV and -305.322 Ha). The GCE-OLC shows a linear calibration curve for tramadol over the range of similar to 55 to 392 mu M, with high sensitivity (0.0315 mu A/mu M) and low limit of detection (LoD) and quantification (LoQ) (3.8 and 12.7 mu M, respectively). The OLC-modified screen-printed electrode (SPE-OLC) was successfully applied for the sensitive detection of tramadol in real pharmaceutical formulations and human serum. The OLC-based electrochemical sensor promises to be useful for the sensitive and accurate detection of tramadol in clinics, quality control, and routine quantification of tramadol drugs in pharmaceutical formulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000903165200001 Publication Date 2022-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:193391 Serial 8908
Permanent link to this record
 

 
Author Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Marchevsky, A.V.; Karakulina, O.M.; Abakumov, A.M.; Gaskov, A.M.
Title Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots Type A1 Journal article
Year 2016 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 618 Issue 618 Pages 253-262
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) This work reports the analysis of visible light activation of room temperature NO2 gas sensitivity of metal oxide semiconductors (MOS): blank and CdSe quantum dots (QDs) sensitized nanocrystallinematrixes ZnO, SnO2 and In2O3. Nanocrystalline metal oxides (MOx) ZnO, SnO2, In2O3 were synthesized by the precipitation method. Colloidal CdSe QDs were obtained by high temperature colloidal synthesis. Sensitization was effectuated by direct adsorption of CdSe QDs stabilized with oleic acid on MOx surface. The role of illumination consists in generation of electrons, which can be transferred into MOx conduction band, and holes that can recombine with the electrons previously trapped by the chemisorbed acceptor species and thus activate desorption of analyte molecules. Under green light illumination for blank SnO2 and In2O3 matrixes the indirect consequential mechanism for the generation of holes is proposed. Anothermechanismis realized in the presence of CdSe QDs. In this case the electron-hole pair is generated in the CdSe quantum dot. Sensor measurements demonstrated that synthesizedmaterials can be used for NO2 detection under visible (green) light illumination at room temperature without any thermal heating.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000389164400005 Publication Date 2016-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 19 Open Access
Notes The work was financially supported by Russian Foundation for Basic Research grant no. 15-03-03026. Approved Most recent IF: 1.879
Call Number EMAT @ emat @ c:irua:138598 Serial 4321
Permanent link to this record
 

 
Author Dasgupta, N.; Borah, R.; Mishra, P.; Gupta, A.K.; Chhabra, R.P.
Title Combined effects of blockage and yield stress on drag and heat transfer from an in-line array of three spheres Type A1 Journal article
Year 2019 Publication Journal of dispersion science and technology Abbreviated Journal
Volume 40 Issue 6 Pages 855-873
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) This work reports results on the drag and heat transfer from an in-line array of three isothermal spheres falling in a cylindrical confinement filled with Bingham plastic fluids. The effects of dimensionless parameters, such as the Reynolds number (1 ≤ Re ≤ 100), Prandtl number (1 ≤ Pr ≤ 100), Bingham number (0 ≤ Bn ≤ 100), blockage ratio (2 ≤ β ≤ 4) and sphere-to-sphere distance (1.5 ≤ t ≤ 6) have been elucidated. The flow and heat transfer characteristics were analysed in terms of yielded/unyielded regions, streamline and isotherm contours, drag coefficient, pressure coefficient, and local and average Nusselt number. Broadly, the drag coefficient shows a positive dependence on Bn and sphere-to-sphere distance (t) while it exhibits an inverse dependence on Re and β. On the other hand, the Nusselt number shows a positive dependence on Re, Pr, Bn and β; and a complex dependence on t for each sphere. Simple predictive expressions for the average Nusselt number for each sphere are formulated, thereby enabling its prediction in a new application.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000467844200010 Publication Date 2018-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0193-2691 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190865 Serial 7680
Permanent link to this record
 

 
Author Vermang, B.; Brammertz, G.; Meuris, M.; Schnabel, T.; Ahlswede, E.; Choubrac, L.; Harel, S.; Cardinaud, C.; Arzel, L.; Barreau, N.; van Deelen, J.; Bolt, P.-J.; Bras, P.; Ren, Y.; Jaremalm, E.; Khelifi, S.; Yang, S.; Lauwaert, J.; Batuk, M.; Hadermann, J.; Kozina, X.; Handick, E.; Hartmann, C.; Gerlach, D.; Matsuda, A.; Ueda, S.; Chikyow, T.; Felix, R.; Zhang, Y.; Wilks, R.G.; Baer, M.
Title Wide band gap kesterite absorbers for thin film solar cells: potential and challenges for their deployment in tandem devices Type A1 Journal article
Year 2019 Publication Sustainable Energy & Fuels Abbreviated Journal
Volume 3 Issue 9 Pages 2246-2259
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) This work reports on developments in the field of wide band gap Cu2ZnXY4 (with X = Sn, Si or Ge, and Y = S, Se) kesterite thin film solar cells. An overview on recent developments and the current understanding of wide band gap kesterite absorber layers, alternative buffer layers, and suitable transparent back contacts is presented. Cu2ZnGe(S,Se)(4) absorbers with absorber band gaps up to 1.7 eV have been successfully developed and integrated into solar cells. Combining a CdS buffer layer prepared by an optimized chemical bath deposition process with a 1.36 eV band gap absorber resulted in a record Cu2ZnGeSe4 cell efficiency of 7.6%, while the highest open-circuit voltage of 730 mV could be obtained for a 1.54 eV band gap absorber and a Zn(O,S) buffer layer. Employing InZnOx or TiO2 protective top layers on SnO2:In transparent back contacts yields 85-90% of the solar cell performance of reference cells (with Mo back contact). These advances show the potential as well as the challenges of wide band gap kesterites for future applications in high-efficiency and low-cost tandem photovoltaic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482057500004 Publication Date 2019-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement No. 640868. The synchrotron radiation experiments were performed at the SPring-8 beamline BL15XU with the approval of the NIMS Synchrotron X-ray Station (Proposals 2016A4600, 2016B4601, and 2017A4600) and at BESSY II with the approval of HZB. B. Vermang has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement no. 715027). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161785 Serial 5404
Permanent link to this record
 

 
Author de Jong, M.; Sleegers, N.; Schram, J.; Daems, D.; Florea, A.; De Wael, K.
Title A Benzocaine‐Induced Local Near‐Surface pH Effect: Influence on the Accuracy of Voltammetric Cocaine Detection Type A1 Journal article
Year 2020 Publication Analysis & Sensing Abbreviated Journal Anal. Sens.
Volume Issue Pages anse.202000012
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) This work reports on a local induced near-surface pH effect (pHS), due to the presence of one analyte, leading to an influence or even suppression of redox signals of a second analyte present in solution. This concept and its impact on voltammetric sensing is illustrated by focusing on the detection of cocaine in the presence of the common adulterant benzocaine. An in-depth study on the occurring interference mechanism and why it occurs for benzocaine specifically and not for other adulterants was performed through the use of multiple electrochemical strategies. It was concluded that the potential shift and loss of intensity of the squarewave voltammetric cocaine signal in the presence of benzocaine was caused by a local pHS effect. A cathodic pretreatment strategy was developed to nonetheless allow accurate cocaine detection. The gathered insights are useful to explain unidentified phenomena involving compounds with properties similar to benzocaine in voltammetric electroanalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2629-2742 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes The authors acknowledge financial support from IOF-SBO/POC (UAntwerp), the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N and Grant 1SB 8120N, and VLAIO IM [HBC.2019.2181]. Approved Most recent IF: NA
Call Number AXES @ axes @c:irua:173031 Serial 6427
Permanent link to this record
 

 
Author Rosenauer, A.; Schowalter, M.; Glas, F.; Lamoen, D.
Title First-principles calculations of 002 structure factors for electron scattering in strained InxGa1-xAs Type A1 Journal article
Year 2005 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 72 Issue 8 Pages 1-10
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract (down) This work provides values of electron scattering 002 structure factors for InxGa1-xAs as a function of the In concentration x=0 to 1. These results allow accurate compositional analysis of pseudomorphically grown InxGa1-xAs/GaAs layers by transmission electron microscopy methods relying on the chemical sensitivity of the (002) beam. The calculations go beyond the limits of the isolated atom approximation, because they take into account charge redistribution effects between atomic sites in the crystal, strain, and static atomic displacements. The computations were performed by the full potential linearized augmented plane-wave method using a generalized gradient approximation for the exchange and correlation part of the potential. The calculations of strained InxGa1-xAs correspond to the strain state in specimens with large, small, and intermediate thickness in the electron beam direction. Additionally, the effect of static atomic displacements is taken into account. All results are listed in a parameterized form. The calculated 002 structure factor vanishes at an In concentration of 16.4%. This value is in a good agreement with previously reported experimental measurements. Hence, our results are a significant improvement with respect to the isolated atom approximation which is conventionally applied in transmission electron microscopy simulations, and which predicts a value of 22.5%.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000231564600106 Publication Date 2005-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 42 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:54918 Serial 1201
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Meynen, V.; Cool, P.; Bogaerts, A.
Title The Potential Use of Core-Shell Structured Spheres in a Packed-Bed DBD Plasma Reactor for CO2 Conversion Type A1 Journal article
Year 2020 Publication Catalysts Abbreviated Journal Catalysts
Volume 10 Issue 5 Pages 530
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) This work proposes to use core-shell structured spheres to evaluate whether it allows to individually optimize bulk and surface effects of a packing material, in order to optimize conversion and energy efficiency. Different core-shell materials have been prepared by spray coating, using dense spheres (as core) and powders (as shell) of SiO2, Al2O3, and BaTiO3. The materials are investigated for their performance in CO2 dissociation and compared against a benchmark consisting of a packed-bed reactor with the pure dense spheres, as well as an empty reactor. The results in terms of CO2 conversion and energy efficiency show various interactions between the core and shell material, depending on their combination. Al2O3 was found as the best core material under the applied conditions here, followed by BaTiO3 and SiO2, in agreement with their behaviour for the pure spheres. Applying a thin shell layer on the cores showed equal performance between the different shell materials. Increasing the layer thickness shifts this behaviour, and strong combination effects were observed depending on the specific material. Therefore, this method of core-shell spheres has the potential to allow tuning of the packing properties more closely to the application by designing an optimal combination of core and shell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000546007000092 Publication Date 2020-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access
Notes Interreg, Project EnOp ; Fonds Wetenschappelijk Onderzoek, G.0254.14N ; Universiteit Antwerpen, Project SynCO2Chem ; We want to thank Jasper Lefevre (VITO) for assistance in the development of the coating suspension for the core-shell spheres. Approved Most recent IF: 3.9; 2020 IF: 3.082
Call Number PLASMANT @ plasmant @c:irua:169222 Serial 6364
Permanent link to this record
 

 
Author Garud, S.; Gampa, N.; Allen, T.G.; Kotipalli, R.; Flandre, D.; Batuk, M.; Hadermann, J.; Meuris, M.; Poortmans, J.; Smets, A.; Vermang, B.
Title Surface passivation of CIGS solar cells using gallium oxide Type A1 Journal article
Year 2018 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 215 Issue 7 Pages 1700826
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se-2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5nm passivation layer show an substantial absolute improvement of 56mV in open-circuit voltage (V-OC), 1mAcm(-2) in short-circuit current density (J(SC)), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430128500015 Publication Date 2018-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 8 Open Access Not_Open_Access
Notes ; The work published in this paper was supported by the European Research Council (ERC) under the Union's Horizon 2020 research and innovation programme (grant agreement No 715027). The authors would also like to thank Dr. Marcel Simor (Solliance) for the CIGS layer fabrication and Prof. Johan Lauwaert (Universtiy of Ghent) for his guidance on DLTS measurements. ; Approved Most recent IF: 1.775
Call Number UA @ lucian @ c:irua:150761 Serial 4981
Permanent link to this record
 

 
Author de Jong, M.; Van Echelpoel, R.; Langley, A.R.; Eliaerts, J.; van den Berg, J.; De Wilde, M.; Somers, N.; Samyn, N.; De Wael, K.
Title Real-time electrochemical screening of cocaine in lab and field settings with automatic result generation Type A1 Journal article
Year 2022 Publication Drug testing and analysis Abbreviated Journal
Volume 14 Issue 8 Pages 1471-1481
Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (down) This work presents the results of a novel application for the fast on-site screening of cocaine and its main cutting agents in suspicious and confiscated samples. The methodology behind the novel application consists of portable electrochemical detection coupled with a peak-recognition algorithm for automated result output generation, validated both in laboratory and field settings. Currently used field tests, predominantly colorimetric tests, are lacking accuracy, often giving false positive or negative results. This presses the need for alternative approaches to field testing. By combining portable electrochemical approaches with peak-recognition algorithms, an accuracy of 98.4% concerning the detection of cocaine was achieved on a set of 374 powder samples. In addition, the approach was tested on multiple 'smuggled', colored cocaine powders and cocaine mixtures in solid and liquid states, typically in matrices such as charcoal, syrup and clothing. Despite these attempts to hide cocaine, our approach succeeded in detecting cocaine during on-site screening scenarios. This feature presents an advantage over colorimetric and optical detection techniques, which can fail with colored sample matrices. This enhanced accuracy on smuggled samples will lead to increased efficiency in confiscation procedures in the field, thus significantly reducing societal economic and safety concerns and highlighting the potential for electrochemical approaches in on-the-spot identification of drugs of abuse.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000790965700001 Publication Date 2022-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187767 Serial 8921
Permanent link to this record
 

 
Author de Clippel, F.; Harkiolakis, A.; Vosch, T.; Ke, X.; Giebeler, L.; Oswald, S.; Houthoofd, K.; Jammaer, J.; Van Tendeloo, G.; Martens, J.A.; Jacobs, P.A.; Baron, G.V.; Sels, B.F.; Denayer, J.F.M.
Title Graphitic nanocrystals inside the pores of mesoporous silica : synthesis, characterization and an adsorption study Type A1 Journal article
Year 2011 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 144 Issue 1/3 Pages 120-133
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) This work presents a new carbonsilica hybrid material, denoted as CSM, with remarkable sorption properties. It consists of intraporous graphitic nanocrystals grown in the pores of mesoporous silica. CSM is obtained by a subtle incipient wetness impregnation of Al-containing mesoporous silica with furfuryl alcohol (FA)/hemelitol solutions. Both the volume match of the impregnation solution with that of the silica template pore volume, and the presence of Al3+ in the silica, are crucial to polymerize FA selectively inside the mesopores. Carbonization of the intraporous polymer was then performed by pyrolysis under He up to 1273 K. The resulting CSMs were examined by SEM, HRTEM, 27Al MAS NMR, N2 adsorption, XRD, TGA, TPD, XPS, pycnometry and Raman spectroscopy. Mildly oxidized graphitic-like carbon nanoblocks, consisting of a few graphene-like sheets, were thus identified inside the template mesopores. Random stacking of these carbon crystallites generates microporosity resulting in biporous materials at low carbon content and microporous materials at high carbon loadings. Very narrow pore distributions were obtained when pyrolysis was carried out under slow heating rate, viz. 1 K min−1. Adsorption and shape selective properties of the carbon filled mesoporous silica were studied by performing pulse chromatography and breakthrough experiments, and by measuring adsorption isotherms of linear and branched alkanes. Whereas the parent mesoporous silica shows unselective adsorption, their CSM analogues preferentially adsorb linear alkanes. The sorption capacity and selectivity can be adjusted by changing the pore size of the template or by varying the synthesis conditions. A relation between the carbon crystallites size and the shape selective behaviour of the corresponding CSM for instance is demonstrated. Most interestingly, CSM shows separation factors for linear and branched alkanes up to values comparable to those of zeolitic molecular sieves.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000293435400016 Publication Date 2011-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 15 Open Access
Notes Approved Most recent IF: 3.615; 2011 IF: 3.285
Call Number UA @ lucian @ c:irua:92325 Serial 1380
Permanent link to this record
 

 
Author Degutis, G.; Pobedinskas, P.; Turner, S.; Lu, Y.-G.; Al Riyami, S.; Ruttens, B.; Yoshitake, T.; D'Haen, J.; Haenen, K.; Verbeeck, J.; Hardy, A.; Van Bael, M.K.
Title CVD diamond growth from nanodiamond seeds buried under a thin chromium layer Type A1 Journal article
Year 2016 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 64 Issue 64 Pages 163-168
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) This work presents a morphological and structural analysis of CVD diamond growth on silicon from nanodiamond seeds covered by a 50 nm thick chromium layer. The role of carbon diffusion as well as chromium and carbon silicide formation is analyzed. The local diamond environment is investigated by scanning transmission electron microscopy in combination with electron energy-loss spectroscopy. The evolution of the diamond phase composition (sp3/sp2) is evaluated by micro-Raman spectroscopy. Raman and X-ray diffraction analysis are used to identify the interfacial phases formed during CVD growth. Based upon the observed morphological and structural evolution, a diamond growth model from nanodiamond seeds buried beneath a thin Cr layer is proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000374608100020 Publication Date 2016-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 11 Open Access
Notes The authors acknowledge financial support provided by Research Program FWO G.056.810 and G0044.13N. A.H. and M.K.V.B are grateful to Hercules Foundation Flanders for financial support. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation – Flanders (FWO). The Titan microscope used for this work was partially funded by the Hercules Foundation. Approved Most recent IF: 2.561
Call Number c:irua:133624UA @ admin @ c:irua:133624 Serial 4091
Permanent link to this record
 

 
Author Buffière, M.; Brammertz, G.; Batuk, M.; Verbist, C.; Mangin, D.; Koble, C.; Hadermann, J.; Meuris, M.; Poortmans, J.
Title Microstructural analysis of 9.7% efficient Cu2ZnSnSe4 thin film solar cells Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue 18 Pages 183903
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) This work presents a detailed analysis of the microstructure and the composition of our record Cu 2ZnSnSe4 (CZTSe)-CdS-ZnO solar cell with a total area efficiency of 9.7%. The average composition of the CZTSe crystallites is Cu 1.94 Zn 1.12Sn0.95Se3.99. Large crystals of ZnSe secondary phase (up to 400 nm diameter) are observed at the voids between the absorber and the back contact, while smaller ZnSe domains are segregated at the grain boundaries and close to the surface of the CZTSe grains. An underlying layer and some particles of Cu xSe are observed at the Mo-MoSe2-Cu2ZnSnSe4 interface. The free surface of the voids at the back interface is covered by an amorphous layer containing Cu, S, O, and C, while the presence of Cd, Na, and K is also observed in this region.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000345000000086 Publication Date 2014-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 17 Open Access
Notes Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:121329 Serial 2038
Permanent link to this record
 

 
Author Abakumov, M.A.; Nukolova, N.V.; Sokolsky-Papkov, M.; Shein, S.A.; Sandalova, T.O.; Vishwasrao, H.M.; Grinenko, N.F.; Gubsky, I.L.; Abakumov, A.M.; Kabanov, A.V.; Chekhonin, V.P.;
Title VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor Type A1 Journal article
Year 2015 Publication Nanomedicine: nanotechnology, biology and medicine Abbreviated Journal Nanomed-Nanotechnol
Volume 11 Issue 11 Pages 825-833
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (MRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with D-eff of 53 +/- 9 nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5 mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma C6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. (C) 2015 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000354559600004 Publication Date 2015-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1549-9634; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.72 Times cited 62 Open Access
Notes Approved Most recent IF: 5.72; 2015 IF: 6.155
Call Number c:irua:126351 Serial 3838
Permanent link to this record
 

 
Author van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S.
Title Integration of a photocatalytic multi-tube reactor for indoor air purification in HVAC systems : a feasibility study Type A1 Journal article
Year 2018 Publication Environmental Science and Pollution Research Abbreviated Journal Environ Sci Pollut R
Volume 25 Issue 18 Pages 18015-18026
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) This work is focused on an in-depth experimental characterization of multi-tube reactors for indoor air purification integrated in ventilation systems. Glass tubes were selected as an excellent photocatalyst substrate to meet the challenging requirements of the operating conditions in a ventilation system in which high flow rates are typical. Glass tubes show a low-pressure drop which reduces the energy demand of the ventilator, and additionally, they provide a large exposed surface area to allow interaction between indoor air contaminants and the photocatalyst. Furthermore, the performance of a range of P25-loaded sol-gel coatings was investigated, based on their adhesion properties and photocatalytic activities. Moreover, the UV light transmission and photocatalytic reactor performance under various operating conditions were studied. These results provide vital insights for the further development and scaling up of multi-tube reactors in ventilation systems which can provide a better comfort, improved air quality in indoor environments, and reduced human exposure to harmful pollutants.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000436879200071 Publication Date 2018-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.741 Times cited 3 Open Access
Notes ; J.V.W. acknowledges the Agentschap Innoveren and Ondernemen for a PhD fellowship. ; Approved Most recent IF: 2.741
Call Number UA @ admin @ c:irua:150946 Serial 5967
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Callaert, C.; Hadermann, J.; Delville, R.; Caspi, E.'ad N.; Dahlqvist, M.; Rosen, J.; Marshal, A.; Pradeep, K.G.; Schneider, J.M.; Vleugels, J.; Lambrinou, K.
Title Compatibility of Zr₂AlC MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutectic Type A1 Journal article
Year 2020 Publication Corrosion Science Abbreviated Journal Corros Sci
Volume 171 Issue Pages 108704-108719
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) This work investigates the compatibility of Zr2AlC MAX phase-based ceramics with liquid LBE, and proposes a mechanism to explain the observed local Zr2AlC/LBE interaction. The ceramics were exposed to oxygen-poor (C-O <= 2.2 x 10(-10) mass%), static liquid LBE at 500 degrees C for 1000 h. A new Zr-2(Al,Bi,Pb)C MAX phase solid solution formed in-situ in the LBE-affected Zr2AlC grains. Out-of-plane ordering was favorable in the new solid solution, whereby A-layers with high and low-Bi/Pb contents alternated in the crystal structure, in agreement with first-principles calculations. Bulk Zr-2(Al,Bi,Pb)C was synthesized by reactive hot pressing to study the crystal structure of the solid solution by neutron diffraction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000537624600005 Publication Date 2020-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-938x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.3 Times cited 3 Open Access Not_Open_Access
Notes ; B.T. acknowledges the financial support of the SCK CEN Academy for Nuclear Science and Technology (Belgium). This research was partly funded by the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/ 2007-2013 under Grant Agreement No. 604862 (FP7 MatISSE), the MYRRHA project (SCK CEN, Belgium), as well as by the Euratom research and training programme 2014-2018 under Grant Agreement No. 740415 (H2020 IL TROVATORE). The performed research falls within the framework of the EERA (European Energy Research Alliance) Joint Programme on Nuclear Materials (JPNM). The authors gratefully acknowledge the Hercules Foundation for Project AKUL/1319 (CombiS(T)EM)) and the Knut and Alice Wallenberg (KAW) foundation. The calculations were carried out using supercomputer resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N) and the PDC Center for High Performance Computing. E.N.C. thanks Offir Ozeri for his help in NPD data acquiring. ; Approved Most recent IF: 8.3; 2020 IF: 5.245
Call Number UA @ admin @ c:irua:170157 Serial 6475
Permanent link to this record
 

 
Author Gasparotto, A.; Barreca, D.; Fornasiero, P.; Gombac, V.; Lebedev, O.; Maccato, C.; Montini, T.; Tondello, E.; Van Tendeloo, G.; Comini, E.; Sberveglieri, G.
Title Multi-functional copper oxide nanosystems for H2 sustainable production and sensing Type A2 Journal article
Year 2009 Publication ECS transactions Abbreviated Journal
Volume 25 Issue 8 Pages 1169-1176
Keywords A2 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) This work focuses on the use of tailored copper oxide nanoarchitectures as multi-functional materials for the sustainable production of hydrogen and its on-line detection. An innovative copper(II) precursor, Cu(hfa)2TMEDA, was adopted in the CVD of CuxO (x=1,2) nanosystems under both O2 and O2+H2O atmospheres on Si(100) and Al2O3 substrates. A multi-technique characterization indicates that both the phase composition (from Cu2O to CuO) and morphology (from continuous films to entangled quasi-1D nanosystems) can be tailored by varying the growth temperature and reaction atmosphere. The obtained CuxO nanodeposits are active in the photocatalytic H2 production from aqueous solutions under UV-Vis irradiation and display interesting gas sensing performances towards hydrogen detection even at moderate temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1938-5862 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:81872 Serial 2211
Permanent link to this record
 

 
Author Alves, L.L.; Bogaerts, A.; Guerra, V.; Turner, M.M.
Title Foundations of modelling of nonequilibrium low-temperature plasmas Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 2 Pages 023002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma–surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000425688600001 Publication Date 2018-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 17 Open Access OpenAccess
Notes The authors would like to thank A Tejero-Del-Caz and A Berthelot for their technical contributions in writing the manuscript. This work was partially funded by Portuguese FCT —Fundação para a Ciência e a Tecnologia, under projects UID/ FIS/50010/2013, PTDC/FISPLA/1243/2014 (KIT-PLAS- MEBA) and PTDC/FIS-PLA/1420/2014 (PREMiERE). Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:149391 Serial 4810
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A.
Title Appearance of a conductive carbonaceous coating in a CO2dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 015023
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) This work examines the properties of a dielectric barrier discharge (DBD) reactor, built for CO2 decomposition, by means of electrical characterization, optical emission spectroscopy and gas chromatography. The discharge, formed in an electronegative gas (such as CO2, but also O2), exhibits clearly different electrical characteristics, depending on the surface conductivity of the reactor walls. An asymmetric current waveform is observed in the metaldielectric (MD) configuration, with sparse high-current pulses in the positive half-cycle (HC) and a more uniform regime in the negative HC. This indicates that the discharge is operating in two alternating regimes with rather different properties. At high CO2 conversion regimes, a conductive coating is deposited on the dielectric. This so-called coated MD configuration yields a symmetric current waveform, with current peaks in both the positive and negative HCs. In a double-dielectric (DD) configuration, the current waveform is also symmetric, but without current peaks in both the positive and negative HC. Finally, the DD configuration with conductive coating on the inner surface of the outer dielectric, i.e. so-called coated DD, yields again an asymmetric current waveform, with current peaks in the negative HC. These different electrical characteristics are related to the presence of the conductive coating on the dielectric wall of the reactor and can be explained by an increase of the local barrier capacitance available for charge transfer. The different discharge regimes affect the CO2 conversion, more specifically, the CO2 conversion is lowest in the clean DD configuration. It is somewhat higher in the coated DD configuration, and still higher in the MD configuration. The clean and coated MD configuration, however, gave similar CO2 conversion. These results indicate that the conductivity of the dielectric reactor walls can highly promote the development of the high-amplitude discharge current pulses and subsequently the CO2 conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370974800030 Publication Date 2016-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 25 Open Access
Notes The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013-ITN) under Grant Agreement № 606889 (RAPID—Reactive Atmospheric Plasma processIng—eDucation network). Approved Most recent IF: 3.302
Call Number c:irua:130790 Serial 4006
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Stergar, E.; Pakarinen, J.; Verwerft, M.; Yang, Y.; Hofer, C.; Schnitzer, R.; Lamm, S.; Felfer, P.; Schryvers, D.
Title The role of Ti and TiC nanoprecipitates in radiation resistant austenitic steel: A nanoscale study Type A1 Journal article
Year 2020 Publication Acta Materialia Abbreviated Journal Acta Mater
Volume 197 Issue Pages 184-197
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) This work encompasses an in-depth transmission electron microscopy and atom probe tomography study of Ti-stabilized austenitic steel irradiated with Fe-ions. The focus is on radiation induced segregation and precipitation, and in particular on how Ti and TiC affect these processes. A 15-15Ti steel (grade: DIN 1.4970) in two thermo-mechanical states (cold-worked and aged) was irradiated at different temperatures up to a dose of 40 dpa. At low irradiation temperatures, the cold-worked and aged materials evolved to a similar microstructure dominated by small Si and Ni clusters, corresponding to segregation to small point defect clusters. TiC precipitates, initially present in the aged material, were found to be unstable under these irradiation conditions. Elevated irradiation temperatures resulted in the nucleation of nanometer sized Cr enriched TiC precipitates surrounded by Si and Ni enriched shells. In addition, nanometer sized Ti- and Mn-enriched G-phase (M6Ni16Si7) precipitates formed, often attached to TiC precipitates. Post irradiation, larger number densities of TiC were observed in the cold-worked material compared to the aged material. This was correlated with a lower volume fraction of G-phase. The findings suggest that at elevated irradiation temperatures, the precipitate-matrix interface is an important point defect sink and contributes to the improved radiation resistance of this material. The study is a first of its kind on stabilized steel and demonstrates the significance of the small Ti addition to the evolution of the microstructure under irradiation. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000564767000001 Publication Date 2020-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited Open Access Not_Open_Access
Notes ; This work was supported by ENGIE [contract number 2015-AC-007 e BSUEZ6900]; the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07051D14517 as part of a Nuclear Science User Facilities experiment; and by the MYRRHA program at SCK-CEN, Belgium. Funding of the Austrian BMK (846933) in the framework of the program “Production of the future” and the “BMK Professorship for Industry” is gratefully acknowledged. We want to thank the staffat MIBL for assisting with the ion irradiations as well as the staffat CAES for assisting with FIB work and conducting APT measurements. ; Approved Most recent IF: 9.4; 2020 IF: 5.301
Call Number UA @ admin @ c:irua:171956 Serial 6626
Permanent link to this record