|   | 
Details
   web
Records
Author Li, D.Y.; Zeng, Y.J.; Batuk, D.; Pereira, L.M.C.; Ye, Z.Z.; Fleischmann, C.; Menghini, M.; Nikitenko, S.; Hadermann, J.; Temst, K.; Vantomme, A.; Van Bael, M.J.; Locquet, J.P.; Van Haesendonck, C.;
Title Relaxor ferroelectricity and magnetoelectric coupling in ZnOCo nanocomposite thin films : beyond multiferroic composites Type A1 Journal article
Year 2014 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 6 Issue 7 Pages 4737-4742
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract ZnOCo nanocomposite thin films are synthesized by combination of pulsed laser deposition of ZnO and Co ion implantation. Both superparamagnetism and relaxor ferroelectricity as well as magnetoelectric coupling in the nanocomposites have been demonstrated. The unexpected relaxor ferroelectricity is believed to be the result of the local lattice distortion induced by the incorporation of the Co nanoparticles. Magnetoelectric coupling can be attributed to the interaction between the electric dipole moments and the magnetic moments, which are both induced by the incorporation of Co. The introduced ZnOCo nanocomposite thin films are different from conventional strain-mediated multiferroic composites.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000334572800018 Publication Date 2014-03-05
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 21 Open Access
Notes Approved Most recent IF: 7.504; 2014 IF: 6.723
Call Number UA @ lucian @ c:irua:117063 Serial 2864
Permanent link to this record
 

 
Author Van Eyndhoven, G.; Batenburg, K.J.; van Oers, C.; Kurttepeli, M.; Bals, S.; Cool, P.; Sijbers, J.
Title Reliable pore-size measurements based on a procedure specifically designed for electron tomography measurements of nanoporous samples Type P3 Proceeding
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT); Vision lab; Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:124548 Serial 2866
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A.
Title Reply to Comment on “Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites” Type Editorial
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 2 Pages 1288
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000330543600051 Publication Date 2014-01-03
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 1 Open Access
Notes Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:115730 Serial 2874
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Reply to “Comment on 'Vortices induced in a superconducting loop by asymmetric kinetic inductance and their detection in transport measurements' ” Type Editorial
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 5 Pages 056502
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract Our calculations, within known limitations of Ginzburg-Landau theory, are fully correct and valid for transport phenomena in asymmetric mesoscopic superconductors, deep in the superconducting state. We deemed the experiments of Burlakov et al. [JETP Lett. 86, 517 (2007)] relevant and important to mention in the general context of our paper since the observed shifts in the oscillations of different quantities are qualitatively similar, even though those measurements are performed close to the superconducting-normal state transition in the so-called Little-Parks regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341266400006 Publication Date 2014-08-28
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119256 Serial 2876
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Tokei, Z.; Magnus, W.
Title Resistivity scaling and electron relaxation times in metallic nanowires Type A1 Journal article
Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 116 Issue 6 Pages 063714
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivity scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000341179400036 Publication Date 2014-08-15
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 17 Open Access
Notes ; ; Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:119260 Serial 2882
Permanent link to this record
 

 
Author Chen, Z.; Bogaerts, A.
Title Response to “Comment on 'Laser ablation of Cu and plume expansion into 1 atm ambient gas'” [J. Appl. Phys. 115, 166101 (2014)] Type Editorial
Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 16 Pages 166102
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000335228400092 Publication Date 2014-05-01
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 1 Open Access
Notes Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:117171 Serial 2898
Permanent link to this record
 

 
Author Gaouyat, L.; He, Z.; Colomer, J.-F.; Lambin, P.; Mirabella, F.; Schryvers, D.; Deparis, O.
Title Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets Type A1 Journal article
Year 2014 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C
Volume 122 Issue Pages 303-308
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Conversion of solar energy into thermal energy helps reducing consumption of non-renewable energies. Cermets (ceramicmetal composites) are versatile materials suitable, amongst other applications, for solar selective absorbers. Although the presence of metallic Ni particles in the dielectric matrix is a prerequisite for efficient solar selective absorption in NiCrOx cermets, no clear evidence of such particles is reported so far. By combining comprehensive chemical and structural analyses, we reveal the presumed nanostructure which is at the origin of the remarkable optical properties of this cermet material. Using sputtered NiCrOx layers in a solar absorber multilayer stack on aluminium substrate allows us to achieve solar absorptance as high as α=96.1% while keeping thermal emissivity as low as ε=2.2%, both values being comparable to best values recorded so far. With the nanostructure of sputtered NiCrOx cermets eventually revealed, further optimization of solar absorbers can be anticipated and technological exploitation of cermet materials in other applications can be foreseen.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000331494200040 Publication Date 2013-11-12
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0927-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 12 Open Access
Notes Approved Most recent IF: 4.784; 2014 IF: 5.337
Call Number UA @ lucian @ c:irua:113086 Serial 2902
Permanent link to this record
 

 
Author Idrissi, H.; Amin-Ahmadi, B.; Wang, B.; Schryvers, D.
Title Review on TEM analysis of growth twins in nanocrystalline palladium thin films : toward better understanding of twin-related mechanisms in high stacking fault energy metals Type A1 Journal article
Year 2014 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 251 Issue 6 Pages 1111-1124
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Various modes of transmission electron microscopy including aberration corrected imaging were used in order to unravel the fundamental mechanisms controlling the formation of growth twins and the evolution of twin boundaries under mechanical and hydrogen loading modes in nanocrystalline (nc) palladium thin films. The latter were produced by electron-beam evaporation and sputter deposition and subjected to uniaxial tensile deformation as well as hydriding/dehydriding cycles. The results show that the twins form by dissociation of grain boundaries. The coherency of Σ3{111} coherent twin boundaries considerably decreases with deformation due to dislocation/twin boundary interactions while Σ3{112} incoherent twin boundaries dissociate under hydrogen cycling into two-phase boundaries bounding a new and unstable 9R phase. The effect of these elementary mechanisms on the macroscopic behavior of the palladium films is discussed and compared to recent experimental and simulation works in the literature. The results provide insightful information to guide the production of well-controlled population of growth twins in high stacking fault energy nc metallic thin films. The results also indicate directions for further enhancement of the mechanical properties of palladium films as needed for instance in palladium-based membranes in hydrogen applications.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000337608600001 Publication Date 2014-02-17
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 7 Open Access
Notes Iap P7/21; Fwo G012012n Approved Most recent IF: 1.674; 2014 IF: 1.489
Call Number UA @ lucian @ c:irua:114580 Serial 2905
Permanent link to this record
 

 
Author Scuracchio, P.; Costamagna; Peeters, F.M.; Dobry, A.
Title Role of atomic vacancies and boundary conditions on ballistic thermal transport in graphene nanoribbons Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 3 Pages 035429
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quantum thermal transport in armchair and zigzag graphene nanoribbons is investigated in the presence of single atomic vacancies and subject to different boundary conditions. We start with a full comparison of the phonon polarizations and energy dispersions as given by a fifth-nearest-neighbor force-constant model (5NNFCM) and by elasticity theory of continuum membranes (ETCM). For free-edge ribbons, we discuss the behavior of an additional acoustic edge-localized flexural mode, known as fourth acoustic branch (4ZA), which has a small gap when it is obtained by the 5NNFCM. Then, we show that ribbons with supported edges have a sample-size dependent energy gap in the phonon spectrum which is particularly large for in-plane modes. Irrespective to the calculation method and the boundary condition, the dependence of the energy gap for the low-energy optical phonon modes against the ribbon width W is found to be proportional to 1/W for in-plane, and 1/W-2 for out-of-plane phonon modes. Using the 5NNFCM, the ballistic thermal conductance and its contributions from every single phonon mode are then obtained by the nonequilibrium Green's function technique. We found that, while edge and central localized single atomic vacancies do not affect the low-energy transmission function of in-plane phonon modes, they reduce considerably the contributions of the flexural modes. On the other hand, in-plane modes contributions are strongly dependent on the boundary conditions and at low temperatures can be highly reduced in supported-edge samples. These findings could open a route to engineer graphene based devices where it is possible to discriminate the relative contribution of polarized phonons and to tune the thermal transport on the nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000339443800009 Publication Date 2014-07-21
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 20 Open Access
Notes ; Discussions with S. D. Dalosto and K. H. Michel are gratefully acknowledged. This work was partially supported by PIP 11220090100392 of CONICET (Argentina) and the Flemish Science Foundation (FWO-VI). We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:118698 Serial 2911
Permanent link to this record
 

 
Author Ustarroz, J.; Altantzis, T.; Hammons, J.A.; Hubin, A.; Bals, S.; Terryn, H.
Title The role of nanocluster aggregation, coalescence, and recrystallization in the electrochemical deposition of platinum nanostructures Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 7 Pages 2396-2406
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract By using an optimized characterization approach that combines aberration-corrected transmission electron microscopy, electron tomography, and in situ ultrasmall angle X-ray scattering (USAXS), we show that the early stages of Pt electrochemical growth on carbon substrates may be affected by the aggregation, self-alignment, and partial coalescence of nanoclusters of d ≈ 2 nm. The morphology of the resulting nanostructures depends on the degree of coalescence and recrystallization of nanocluster aggregates, which in turn depends on the electrodeposition potential. At low overpotentials, a self-limiting growth mechanism may block the epitaxial growth of primary nanoclusters and results in loose dendritic aggregates. At more negative potentials, the extent of nanocluster coalescence and recrystallization is larger and further growth by atomic incorporation may be allowed. On one hand, this suggests a revision of the VolmerWeber island growth mechanism. Whereas this theory has traditionally assumed direct attachment as the only growth mechanism, it is suggested that nanocluster self-limiting growth, aggregation, and coalescence should also be taken into account during the early stages of nanoscale electrodeposition. On the other hand, depending on the deposition potential, ultrahigh porosities can be achieved, turning electrodeposition in an ideal process for highly active electrocatalyst production without the need of using high surface area carbon supports.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000334572300026 Publication Date 2014-03-10
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 55 Open Access Not_Open_Access
Notes FWO; contract no. FWOAL527 Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:116956 Serial 2916
Permanent link to this record
 

 
Author Clima, S.; Sankaran, K.; Chen, Y.Y.; Fantini, A.; Celano, U.; Belmonte, A.; Zhang, L.; Goux, L.; Govoreanu, B.; Degraeve, R.; Wouters, D.J.; Jurczak, M.; Vandervorst, W.; Gendt, S.D.; Pourtois, G.;
Title RRAMs based on anionic and cationic switching : a short overview Type A1 Journal article
Year 2014 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R
Volume 8 Issue 6 Pages 501-511
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Resistive random access memories are emerging as a new type of memory that has the potential to combine both the speed of volatile and the retention of nonvolatile memories. It operates based on the formation/dissolution of a low-resistivity filament being constituted of either metallic ions or atomic vacancies within an insulating matrix. At present, the mechanisms and the parameters controlling the performances of the device remain unclear. In that respect, first-principles simulations provide useful insights on the atomistic mechanisms, the thermodynamic and kinetics factors that modulate the material conductivity, providing guidance into the engineering of the operation of the device. In this paper, we review the current state-of-the-art knowledge on the atomistic switching mechanisms driving the operation of copper-based conductive bridge RRAM and HfOx valence change RRAM. [GRAPHICS] Conceptual illustration of the RRAM device with the filament formation and disruption during its operation. AE/IM/CE are the active electrode/insulating matrix/counterelectrode. The blue circles represent the conducting defects. (C) 2014 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000338021200004 Publication Date 2014-04-04
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1862-6254; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.032 Times cited 28 Open Access
Notes Approved Most recent IF: 3.032; 2014 IF: 2.142
Call Number UA @ lucian @ c:irua:118679 Serial 2933
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J.
Title Rutherford scattering of electron vortices Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue 3 Pages 032715-32719
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract By considering a cylindrically symmetric generalization of a plane wave, the first-order Born approximation of screened Coulomb scattering unfolds two new dimensions in the scattering problem: transverse momentum and orbital angular momentum of the incoming beam. In this paper, the elastic Coulomb scattering amplitude is calculated analytically for incoming Bessel beams. This reveals novel features occurring for wide-angle scattering and quantitative insights for small-angle vortex scattering. The result successfully generalizes the well-known Rutherford formula, incorporating transverse and orbital angular momentum into the formalism.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000333690500008 Publication Date 2014-03-31
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 34 Open Access
Notes 312483-Esteem2; N246791 – Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:115562UA @ admin @ c:irua:115562 Serial 2936
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Altantzis, T.; Heidari, H.; Van Aert, S.; Van Tendeloo, G.
Title Seeing and measuring in 3D with electrons Type A1 Journal article
Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys
Volume 15 Issue 2-3 Pages 140-150
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Modern TEM enables the investigation of nanostructures at the atomic scale. However, TEM images are only two-dimensional (2D) projections of a three-dimensional (3D) object. Electron tomography can overcome this limitation. The technique is increasingly focused towards quantitative measurements and reaching atomic resolution in 3D has been the ultimate goal for many years. Therefore, one needs to optimize the acquisition of the data, the 3D reconstruction techniques as well as the quantification methods. Here, we will review a broad range of methodologies and examples. Finally, we will provide an outlook and will describe future challenges in the field of electron tomography.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000334013600005 Publication Date 2014-01-20
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 15 Open Access OpenAccess
Notes (FWO;Belgium); European Research Council under the 7th Framework Program (FP7); ERC grant No.246791 – COUNTATOMS; ERC grant No.335078 – COLOURATOMS; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.048; 2014 IF: 2.035
Call Number UA @ lucian @ c:irua:113855 Serial 2960
Permanent link to this record
 

 
Author Sobrino Fernandez, M.; Misko, V.R.; Peeters, F.M.
Title Self-assembly of Janus particles confined in a channel Type A1 Journal article
Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 89 Issue 2 Pages 022306-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Janus particles present an important class of building blocks for directional assembly. These are compartmentalized colloids with two different hemispheres. Here, we consider a two-dimensional model of Janus disks consisting of a hydrophobic semicircle and an electro-negatively charged one. Placed in a solution, the hydrophobic sides will attract each other while the charged sides will give rise to a repulsive force. Using molecular dynamics simulations, we study the morphology of these particles when confined in a channel-like environment using a one dimensional harmonic confinement potential. The interest to this system is first of all due to the fact that it could serve as a simple model for membrane formation. Indeed, the recently synthesized new class of artificial amphiphiles, known as Janus dendrimers, were shown to self-assemble in bilayer structures mimicking biological membranes. In turn, Janus particles that combine the amphiphilicity and colloidal rigidity serve as a good model for Janus dendrimers. A variety of ordered membrane-like morphologies are found consisting of single and multiple chain configurations with different orientations of the particles with respect to each other that we summarize in a phase diagram.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000332179900009 Publication Date 2014-02-21
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 11 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and by the “Odysseus” program of the Flemish government and FWO-Vl. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:115858 Serial 2971
Permanent link to this record
 

 
Author Khaletskaya, K.; Turner, S.; Tu, M.; Wannapaiboon, S.; Schneemann, A.; Meyer, R.; Ludwig, A.; Van Tendeloo, G.; Fischer, R.A.
Title Self-directed localization of ZIF-8 thin film formation by conversion of ZnO nanolayers Type A1 Journal article
Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 24 Issue 30 Pages 4804-4811
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Control of localized metal-organic framework (MOF) thin film formation is a challenge. Zeolitic imidazolate frameworks (ZIFs) are an important sub-class of MOFs based on transition metals and imidazolate linkers. Continuous coatings of intergrown ZIF crystals require high rates of heterogeneous nucleation. In this work, substrates coated with zinc oxide layers are used, obtained by atomic layer deposition (ALD) or by magnetron sputtering, to provide the Zn2+ ions required for nucleation and localized growth of ZIF-8 films ([Zn(mim)(2)]; Hmim = 2-methylimidazolate). The obtained ZIF-8 films reveal the expected microporosity, as deduced from methanol adsorption studies using an environmentally controlled quartz crystal microbalance (QCM) and comparison with bulk ZIF-8 reference data. The concept is transferable to other MOFs, and is applied to the formation of [Al(OH)(1,4-ndc)](n) (ndc = naphtalenedicarboxylate) thin films derived from Al2O3 nanolayers.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000340549900010 Publication Date 2014-05-07
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 77 Open Access
Notes 312483 Esteem2; Fwo; esteem2_ta Approved Most recent IF: 12.124; 2014 IF: 11.805
Call Number UA @ lucian @ c:irua:119215 Serial 2975
Permanent link to this record
 

 
Author Galván-Moya, J.E.; Altantzis, T.; Nelissen, K.; Peeters, F.M.; Grzelczak, M.; Liz-Marán, L.M.; Bals, S.; Van Tendeloo, G.
Title Self-organization of highly symmetric nanoassemblies : a matter of competition Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 4 Pages 3869-3875
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The properties and applications of metallic nanoparticles are inseparably connected not only to their detailed morphology and composition but also to their structural configuration and mutual interactions. As a result, the assemblies often have superior properties as compared to individual nanoparticles. Although it has been reported that nanoparticles can form highly symmetric clusters, if the configuration can be predicted as a function of the synthesis parameters, more targeted and accurate synthesis will be possible. We present here a theoretical model that accurately predicts the structure and configuration of self-assembled gold nanoclusters. The validity of the model is verified using quantitative experimental data extracted from electron tomography 3D reconstructions of different assemblies. The present theoretical model is generic and can in principle be used for different types of nanoparticles, providing a very wide window of potential applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000334990600084 Publication Date 2014-03-13
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 34 Open Access OpenAccess
Notes FWO; Methusalem; 246791 COUNTATOMS; 335078 COLOURATOM; 262348 ESMI; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:116955 Serial 2977
Permanent link to this record
 

 
Author Xu, P.; Dong, L.; Neek-Amal, M.; Ackerman, M.L.; Yu, J.; Barber, S.D.; Schoelz, J.K.; Qi, D.; Xu, F.; Thibado, P.M.; Peeters, F.M.;
Title Self-organized platinum nanoparticles on freestanding graphene Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 3 Pages 2697-2703
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Freestanding graphene membranes were successfully functionalized with platinum nanoparticles (Pt NPs). High-resolution transmission electron microscopy revealed a homogeneous distribution of single-crystal Pt NPs that tend to exhibit a preferred orientation. Unexpectedly, the NPs were also found to be partially exposed to the vacuum with the top Pt surface raised above the graphene substrate, as deduced from atomic-scale scanning tunneling microscopy images and detailed molecular dynamics simulations. Local strain accumulation during the growth process is thought to be the origin of the NP self-organization. These findings are expected to shape future approaches in developing Pt NP catalysts for fuel cells as well as NP-functionalized graphene-based high-performance electronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000333539400085 Publication Date 2014-02-05
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 38 Open Access
Notes ; M.N.A. acknowledges financial support by the EU-Marie Curie IIF postdoc Fellowship/299855. F.M.P. acknowledges financial support by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Foundation of the Flemish Government. L.D. acknowledges financial support by the Taishan Overseas Scholar program (tshw20091005), the International Science & Technology Cooperation Program of China (2014DFA60150), the National Natural Science Foundation of China (51172113), the Shandong Natural Science Foundation (JQ201118), the Qingdao Municipal Science and Technology Commission (12-1-4-136-hz), and the National Science Foundation (DMR-0821159). P.M.T. is thankful for the financial support of the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. ; Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:116881 Serial 2978
Permanent link to this record
 

 
Author Verbeeck, J.; Guzzinati, G.; Clark, L.; Juchtmans, R.; Van Boxem, R.; Tian, H.; Béché, A.; Lubk, A.; Van Tendeloo, G.
Title Shaping electron beams for the generation of innovative measurements in the (S)TEM Type A1 Journal article
Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys
Volume 15 Issue 2-3 Pages 190-199
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In TEM, a typical goal consists of making a small electron probe in the sample plane in order to obtain high spatial resolution in scanning transmission electron microscopy. In order to do so, the phase of the electron wave is corrected to resemble a spherical wave compensating for aberrations in the magnetic lenses. In this contribution, we discuss the advantage of changing the phase of an electron wave in a specific way in order to obtain fundamentally different electron probes opening up new applications in the (S)TEM. We focus on electron vortex states as a specific family of waves with an azimuthal phase signature and discuss their properties, production and applications. The concepts presented here are rather general and also different classes of probes can be obtained in a similar fashion, showing that electron probes can be tuned to optimize a specific measurement or interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000334013600009 Publication Date 2014-02-01
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 22 Open Access
Notes Vortex ECASJO_; Approved Most recent IF: 2.048; 2014 IF: 2.035
Call Number UA @ lucian @ c:irua:116946UA @ admin @ c:irua:116946 Serial 2992
Permanent link to this record
 

 
Author Lucena, D.; Galván Moya, J.E.; Ferreira, W.P.; Peeters, F.M.
Title Single-file and normal diffusion of magnetic colloids in modulated channels Type A1 Journal article
Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 89 Issue 3 Pages 032306-32309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Diffusive properties of interacting magnetic dipoles confined in a parabolic narrow channel and in the presence of a periodic modulated (corrugated) potential along the unconfined direction are studied using Brownian dynamics simulations. We compare our simulation results with the analytical result for the effective diffusion coefficient of a single particle by Festa and d'Agliano [Physica A 90, 229 (1978)] and show the importance of interparticle interaction on the diffusion process. We present results for the diffusion of magnetic dipoles as a function of linear density, strength of the periodic modulation and commensurability factor.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000333646400005 Publication Date 2014-03-13
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 5 Open Access
Notes ; This work was supported by CNPq, CAPES, FUNCAP (Pronex grant), the Flemish Science Foundation (FWO-Vl), the collaborative program CNPq-FWO-Vl, and the Brazilian program Science Without Borders (CsF). D. Lucena acknowledges fruitful discussions with W. A. Munoz, V. F. Becerra, E. C. Euan-Diaz, and M. R. Masir. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:116865 Serial 3020
Permanent link to this record
 

 
Author Kerkhofs, S.; Leroux, F.; Allouche, L.; Mellaerts, R.; Jammaer, J.; Aerts, A.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Martens, J.A.;
Title Single-step alcohol-free synthesis of coreshell nanoparticles of \gamma-casein micelles and silica Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 49 Pages 25650-25657
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new, single-step protocol for wrapping individual nanosized β-casein micelles with silica is presented. This biomolecule-friendly synthesis proceeds at low protein concentration at almost neutral pH, and makes use of sodium silicate instead of the common silicon alkoxides. This way, formation of potentially protein-denaturizing alcohols can be avoided. The pH of the citrate-buffered synthesis medium is close to the isoelectric point of β-casein, which favours micelle formation. A limited amount of sodium silicate is added to the protein micelle suspension, to form a thin silica coating around the β-casein micelles. The size distribution of the resulting proteinsilica structures was characterized using DLS and SAXS, as well as 1H NMR DOSY with a dedicated pulsed-field gradient cryo-probehead to cope with the low protein concentration. The degree of silica-condensation was investigated by 29Si MAS NMR, and the nanostructure was revealed by advanced electron microscopy techniques such as ESEM and HAADF-STEM. As indicated by the combined characterization results, a silica shell of 2 nm is formed around individual β-casein micelles giving rise to separate protein coresilica shell nanoparticles of 17 nm diameter. This alcohol-free method at mild temperature and pH is potentially suited for packing protein molecules into bio-compatible silica nanocapsules for a variety of applications in biosensing, therapeutic protein delivery and biocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000338434500025 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 3 Open Access OpenAccess
Notes Fwo; 262348 Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:125382 Serial 3027
Permanent link to this record
 

 
Author Shi, H.; Frenzel, J.; Martinez, G.T.; Van Rompaey, S.; Bakulin, A.; Kulkova, A.; Van Aert, S.; Schryvers, D.
Title Site occupation of Nb atoms in ternary Ni-Ti-Nb shape memory alloys Type A1 Journal article
Year 2014 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 74 Issue Pages 85-95
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nb occupancy in the austenite B2-NiTi matrix and Ti2Ni phase in NiTiNb shape memory alloys was investigated by aberration-corrected scanning transmission electron microscopy and precession electron diffraction. In both cases, Nb atoms were found to prefer to occupy the Ti rather than Ni sites. A projector augmented wave method within density functional theory was used to calculate the atomic and electronic structures of the austenitic B2-NiTi matrix phase and the Ti2Ni precipitates both with and without addition of Nb. The obtained formation energies and analysis of structural and electronic characteristics explain the preference for Ti sites for Nb over Ni sites.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000338621400009 Publication Date 2014-05-08
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 21 Open Access
Notes Approved Most recent IF: 5.301; 2014 IF: 4.465
Call Number UA @ lucian @ c:irua:118334 Serial 3028
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C.; Rousseau, A.
Title Special issue on fundamentals of plasmasurface interactions Type Editorial
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 22 Pages 220301
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000336207900001 Publication Date 2014-05-14
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 2 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:116917 Serial 3068
Permanent link to this record
 

 
Author Buffière, M.; Brammertz, G.; Oueslati, S.; El Anzeery, H.; Bekaert, J.; Ben Messaoud, K.; Köble, C.; Khelifi, S.; Meuris, M.; Poortmans, J.
Title Spectral current-voltage analysis of kesterite solar cells Type A1 Journal article
Year 2014 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 17 Pages 175101-175105
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract Current-voltage analysis using different optical band pass filters has been performed on Cu2ZnSnSe4 and Cu2ZnSn(S, Se)(4) thin-film solar cells. When using red or orange light (i.e. wavelengths above 600 nm), a distortion appears in the I-V curve of the Cu2ZnSnSe4 solar cell, indicating an additional potential barrier to the current flow in the device for these conditions of illumination. This barrier is reduced when using a Cu2ZnSn(S, Se)(4) absorber. Numerical simulations demonstrate that the barrier visible under red light could be explained by a positive conduction band offset at the front interface coupled with compensating defects in the buffer layer.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000334504800003 Publication Date 2014-04-10
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 25 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:117170 Serial 3070
Permanent link to this record
 

 
Author Van de Put, M.; Thewissen, M.; Magnus, W.; Sorée, B.; Sellier, J.M.
Title Spectral force approach to solve the time-dependent Wigner-Liouville equation Type P1 Proceeding
Year 2014 Publication 2014 International Workshop On Computational Electronics (iwce) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 978-1-4799-5433-9 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:122221 Serial 3071
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Hai, G.-Q.; Peeters, F.M.
Title Spin- and valley-dependent commensurability oscillations and electric-field-induced quantum Hall plateaux in periodically modulated silicene Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 21 Pages 213109
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the commensurability oscillations in silicene subject to a perpendicular electric field E-z, a weak magnetic field B, and a weak periodic potential V = V-0 cos(Cy); C = 2 pi/a(0) with a(0) its period. The field E-z and/or the modulation lift the spin degeneracy of the Landau levels and lead to spin and valley resolved Weiss oscillations. The spin resolution is maximal when the field E-z is replaced by a periodic one E-z = E-0 cos(Dy); D = 2 pi/b(0), while the valley one is maximal for b(0) = a(0). In certain ranges of B values, the current is fully spin or valley polarized. Additional quantum Hall conductivity plateaux arise due to spin and valley intra-Landau-level transitions. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000337143000047 Publication Date 2014-05-30
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 16 Open Access
Notes ; The work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. Also, G. Q. H. was supported by FAPESP and CNPq (Brazil). ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:118409 Serial 3078
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Peeters, F.M.
Title Spin- and valley-dependent magnetotransport in periodically modulated silicene Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 12 Pages 125444
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The low-energy physics of silicene is described by Dirac fermions with a strong spin-orbit interaction and its band structure can be controlled by an external perpendicular electric field E-z. We investigate the commensurability oscillations in silicene modulated by a weak periodic potential V = V-0 cos(2 pi y/a(0)) with a(0) as its period, in the presence of a perpendicular magnetic field B and of a weak sinusoidal electric field E-z = E-0 cos(2 pi y/b(0)), where b(0) is its period. We show that the spin and valley degeneracy of the Landau levels is lifted, due to the modulation, and that the interplay between the strong spin-orbit interaction and the potential and electric field modulations can result in spin- and valley-resolved magnetotransport. At very weak magnetic fields the commensurability oscillations induced by a weak potential modulation can exhibit a beating pattern depending on the strength of the homogenous electric field Ez but this is not the case when only Ez is modulated. The Hall conductivity plateaus acquire a step structure, due to spin and valley intra-Landau-level transitions, that is absent in unmodulated silicene. The results are critically contrasted with those for graphene and the two-dimensional electron gas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342497700008 Publication Date 2014-09-25
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes ; Our work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119946 Serial 3079
Permanent link to this record
 

 
Author Van Duppen, B.; Vasilopoulos, P.; Peeters, F.M.
Title Spin and valley polarization of plasmons in silicene due to external fields Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 3 Pages 035142
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of the two-dimensional material silicene are strongly influenced by the application of a perpendicular electric field E-z and of an exchange field M due to adatoms positioned on the surface or a ferromagnetic substrate. Within the random phase approximation, we investigate how electron-electron interactions are affected by these fields and present analytical and numerical results for the dispersion of plasmons, their lifetime, and their oscillator strength. We find that the combination of the fields E-z and M brings a spin and valley texture to the particle-hole excitation spectrum and allows the formation of spin-and valley-polarized plasmons. When the Fermi level lies in the gap of one spin in one valley, the intraband region of the corresponding spectrum disappears. For zero E-z and finite M the spin symmetry is broken and spin polarization is possible. The lifetime and oscillator strength of the plasmons are shown to depend strongly on the number of spin and valley type electrons that form the electron-hole pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000339974700001 Publication Date 2014-07-30
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 49 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant grant to B.V.D., the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:118776 Serial 3080
Permanent link to this record
 

 
Author Grujić, M.M.; Tadić, M.Z.; Peeters, F.M.
Title Spin-valley filtering in strained graphene structures with artificially induced carrier mass and spin-orbit coupling Type A1 Journal article
Year 2014 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 113 Issue 4 Pages 046601
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interplay of massive electrons with spin-orbit coupling in bulk graphene results in a spin-valley dependent gap. Thus, a barrier with such properties can act as a filter, transmitting only opposite spins from opposite valleys. In this Letter we show that a strain induced pseudomagnetic field in such a barrier will enforce opposite cyclotron trajectories for the filtered valleys, leading to their spatial separation. Since spin is coupled to the valley in the filtered states, this also leads to spin separation, demonstrating a spin-valley filtering effect. The filtering behavior is found to be controllable by electrical gating as well as by strain.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000339620300013 Publication Date 2014-07-23
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 90 Open Access
Notes ; This work was supported by the Serbian Ministry of Education, Science, and Technological Development, the Flemish Science Foundation (FWO-V1), and the Methusalem program of the Flemish government. ; Approved Most recent IF: 8.462; 2014 IF: 7.512
Call Number UA @ lucian @ c:irua:118731 Serial 3104
Permanent link to this record
 

 
Author Kozák, T.; Bogaerts, A.
Title Splitting of CO2 by vibrational excitation in non-equilibrium plasmas : a reaction kinetics model Type A1 Journal article
Year 2014 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 23 Issue 4 Pages 045004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a zero-dimensional kinetic model of CO2 splitting in non-equilibrium plasmas. The model includes a description of the CO2 vibrational kinetics (25 vibrational levels up to the dissociation limit of the molecule), taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is applied to study the reaction kinetics of CO2 splitting in an atmospheric-pressure dielectric barrier discharge (DBD) and in a moderate-pressure microwave discharge. The model results are in qualitative agreement with published experimental works. We show that the CO2 conversion and its energy efficiency are very different in these two types of discharges, which reflects the important dissociation mechanisms involved. In the microwave discharge, excitation of the vibrational levels promotes efficient dissociation when the specific energy input is higher than a critical value (2.0 eV/molecule under the conditions examined). The calculated energy efficiency of the process has a maximum of 23%. In the DBD, vibrationally excited levels do not contribute significantly to the dissociation of CO2 and the calculated energy efficiency of the process is much lower (5%).
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000345761500014 Publication Date 2014-06-17
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 170 Open Access
Notes Approved Most recent IF: 3.302; 2014 IF: 3.591
Call Number UA @ lucian @ c:irua:117398 Serial 3108
Permanent link to this record
 

 
Author Malo, S.; Abakumov, A.M.; Daturi, M.; Pelloquin, D.; Van Tendeloo, G.; Guesdon, A.; Hervieu, M.
Title Sr21Bi8Cu2(CO3)(2)O-41, a Bi5+ Oxycarbonate with an Original 10L Structure Type A1 Journal article
Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 53 Issue 19 Pages 10266-10275
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The layered structure of Sr21Bi8Cu2(CO3)(2)O-41 (Z = 2) was determined by transmission electron microscopy, infrared spectroscopy, and powder X-ray diffraction refinement in space group P6(3)/mcm (No. 194), with a = 10.0966(3)angstrom and c = 26.3762(5)angstrom. This original 10L-type structure is built from two structural blocks, namely, [Sr15Bi6Cu2(CO3)O-29] and [Sr6Bi2(CO3)O-12]. The Bi5+ cations form [Bi2O10] dimers, whereas the Cu2+ and C atoms occupy infinite tunnels running along (c) over right arrow. The nature of the different blocks and layers is discussed with regard to the existing hexagonal layered compounds. Sr21Bi8Cu2(CO3)(2)O-41 is insulating and paramagnetic.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000342856800039 Publication Date 2014-10-06
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record
Impact Factor 4.857 Times cited Open Access
Notes Approved Most recent IF: 4.857; 2014 IF: 4.762
Call Number UA @ lucian @ c:irua:121115 Serial 3114
Permanent link to this record