|   | 
Details
   web
Records
Author Alfeld, M.; Janssens, K.; Dik, J.; de Nolf, W.; van der Snickt, G.
Title Optimization of mobile scanning macro-XRF systems for the in situ investigation of historical paintings Type A1 Journal article
Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal (up) J Anal Atom Spectrom
Volume 26 Issue 5 Pages 899-909
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Elemental distribution maps are of great interest in the study of historical paintings, as they allow to investigate the pigment use of the artist, to image changes made in the painting during or after its creation and in some cases to reveal discarded paintings that were later over painted. Yet a method that allows to record such maps of a broad range of elements in a fast, non-destructive and in situ manner is not yet commonly available; a dedicated mobile scanning XRF instrument might fill this gap. In this paper we present three self-built scanning macro-XRF instruments, each based on the experience gained with its precursor. These instruments are compared in terms of sensitivity and limits of detection, which includes a discussion of the use of polycapillary optics and pinhole collimators as beam defining devices. Furthermore, the imaging capabilities of the instruments are demonstrated in three exemplary cases: (parts of) historical paintings from the 15th to the 19th century are examined. These cases illustrate the value of element specific distribution maps in the study of historical paintings and allow in the case of Vincent van Gogh's Patch of Grass a direct comparison between in situ and synchrotron based scanning macro-XRF.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000289731900004 Publication Date 2011-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 107 Open Access
Notes ; The investigation of the “Triptych of the Seven Sacraments'' was done in collaboration with Griet Steyaert, independent restorer, and Lizet Klaassen, Royal Museum of Fine Arts (Antwerp, Belgium). The investigation of ”Patch of Grass'' was realized in collaboration with Luuk van der Loeff, Kroller-Muller-Museum (Otterlo, The Netherlands). M. Alfeld is a PhD fellowship of the Research Foundation-Flanders (FWO). This research was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16) NACHO. The text also presents results of GOA "XANES meets ELNES'' (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0103.04, G.0689.06 and G.0704.08. Further, the work presented was sponsored by the Innovational Research Incentives Scheme of the Netherlands Organization for Scientific Research, NWO (proj. no. 016.118.303). ; Approved Most recent IF: 3.379; 2011 IF: 3.220
Call Number UA @ admin @ c:irua:89919 Serial 5758
Permanent link to this record
 

 
Author Radepont, M.; de Nolf, W.; Janssens, K.; van der Snickt, G.; Coquinot, Y.; Klaassen, L.; Cotte, M.
Title The use of microscopic X-ray diffraction for the study of HgS and its degradation products corderoite (\alpha-Hg3S2Cl2), kenhsuite (\gamma-Hg3S2Cl2) and calomel (Hg2Cl2) in historical paintings Type A1 Journal article
Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal (up) J Anal Atom Spectrom
Volume 26 Issue 5 Pages 959-968
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Since antiquity, the red pigment mercury sulfide (α-HgS), called cinnabar in its natural form or vermilion red when synthetic, was very often used in frescoes and paintings, even if it was known to suffer occasionally from degradation. The paint hereby acquires a black or silver-grey aspect. The chemical characterization of these alteration products is rather challenging mainly because of the micrometric size and heterogeneity of the surface layers that develop and that are responsible for the color change. Methods such as electron microscopy, synchrotron-based microscopic X-ray fluorescence, microscopic X-ray absorption near edge spectroscopy, Raman microscopy and secondary ion microscopy have been previously employed to identify the (Hg- and S-) compounds present and to study their co-localization. Next to these, also microscopic X-ray diffraction (XRD) (either by making use of laboratory X-ray sources or when used at a synchrotron facility) allows the identification of the crystal phases that are present in degraded HgS paint layers. In this paper we employ these various forms of micro-XRD to analyze degraded red paint in different paintings and compare the results with other X-ray based methods. Whereas the elemental analyses of the degradation products revealed, next to mercury and sulfur, the presence of chlorine, X-ray diffraction allowed the identification, next to α-HgS, of the Hg and S-containing compound calomel (Hg2Cl2) but also of the Hg, S and Cl-containing minerals corderoite (α-Hg3S2Cl2) and kenhsuite (γ-Hg3S2Cl2). These observations are consistent with X-ray absorption spectroscopy measurements performed at the S- and Cl-edges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000289731900011 Publication Date 2011-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 40 Open Access
Notes ; The authors gratefully acknowledge GOA programme “XANES meets EELS'' (University of Antwerp Research Council), the IUAP VI/P16 programme ”Nacho'' (BELSPO, Brussels, Belgium) and FWO (Brussels, Belgium) projects no. G.0689.06, G.0704.08 and G017909N for financial support, the ESRF for granting beamtime under proposals no. EC442 and EC720, and Gema Martinez-Criado for practical help on ID18F. The KMSKA staff is also gratefully acknowledged for their help and interest. Javier Chillida is thanked for providing us with the Pedralbes samples. The authors are also indebted to the CHARISMA project (grant agreement 228330) for financial support. ; Approved Most recent IF: 3.379; 2011 IF: 3.220
Call Number UA @ admin @ c:irua:89927 Serial 5896
Permanent link to this record
 

 
Author Aibéo, C.L.; Goffin, S.; Schalm, O.; van der Snickt, G.; Laquière, N.; Eyskens, P.; Janssens, K.
Title Micro-Raman analysis for the identification of pigments from 19th and 20th century paintings Type A1 Journal article
Year 2008 Publication Journal of Raman spectroscopy Abbreviated Journal (up) J Raman Spectrosc
Volume 39 Issue 8 Pages 1091-1098
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In this article, results using confocal µ-Raman to analyse the cross-section of paint samples are presented. Results obtained with light microscopy, scanning electron microscopy (SEM) combined with an energy dispersive X-ray analysis (EDX) and micro-X-ray fluorescence (µ-XRF) are mentioned and compared to the ones obtained with confocal (MRS). In some cases, pigment identification was possible only by combining analytical results from different techniques. The samples were drawn from five paintings belonging to the Academy of Fine Arts of Antwerp, which are part of a collection of 34 paintings made by students from the Academy between 1819 and 1920. Since, on the one hand, the painting techniques and materials, especially pigments, used in this period are still not completely known, and on the other hand, this collection constitutes a very important and reliable resource of information, these paintings were chosen for a systematic investigation. They represent the evolution of painting in Belgium over approximately a century.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000259242100020 Publication Date 2008-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0377-0486 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.969 Times cited 28 Open Access
Notes Approved Most recent IF: 2.969; 2008 IF: 3.526
Call Number UA @ admin @ c:irua:74467 Serial 5716
Permanent link to this record
 

 
Author van der Snickt, G.; Legrand, S.; Caen, J.; Vanmeert, F.; Alfeld, M.; Janssens, K.
Title Chemical imaging of stained-glass windows by means of macro X-ray fluorescence (MA-XRF) scanning Type A1 Journal article
Year 2016 Publication Microchemical journal Abbreviated Journal (up) Microchem J
Volume 124 Issue Pages 615-622
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract Since the recent development of a mobile setup, MA-XRF scanning proved a valuable tool for the non-invasive, technical study of paintings. In this work, the applicability of MA-XRF scanning for investigating stained-glass windows inside a conservation studio is assessed by analysis of a high-profile, well-studied late-mediaeval panel. Although accurate quantification of components is not feasible with this analytical imaging technique, plotting the detected intensities of K versus Ca in a scatter plot allowed distinguishing glass fragments of different compositional types within the same panel. In particular, clusters in the Ca/K correlation plot revealed the presence of two subtypes of potash glass and three subtypes of high lime low alkali glass. MA-XRF results proved consistent with previous quantitative SEM-EDX analysis on two samples and analytical-based theories on glass production in the Low Countries formulated in literature. A bi-plot of the intensities of the more energetic Rb-K versus Sr-K emission lines yielded a similar glass type differentiation and is here presented as suitable alternative in case the Ca/K signal ratio is affected by superimposed weathering crusts. Apart from identification of the chromophores responsible for the green, blue and red glass colors, contrasting the associated elemental distribution maps obtained on the exterior and interior side of the glass permitted discriminating between colored pot metal glass and multi-layered flashed glass as well. Finally, the benefit of obtaining compositional information from the entire surface, as opposed to point analysis, was illustrated by the discovery of what appears to be a green cobalt glass a feature that was previously missed on this well-studied stained-glass window, both by connoisseurs and spectroscopic sample analysis. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000367755600074 Publication Date 2015-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 22 Open Access
Notes ; The staff of the Museums of the City of Bruges, i.e. Director Till-Holger Borchert and Deputy Curator Kristel Van Audenaeren, are acknowledged for this pleasant collaboration and the authorization for the publication of the images in this article. This research was supported by the InBev-Baillet Latour fund. ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:131100 Serial 5514
Permanent link to this record
 

 
Author van der Snickt, G.; Legrand, S.; Slama, I.; Van Zuien, E.; Gruber, G.; Van der Stighelen, K.; Klaassen, L.; Oberthaler, E.; Janssens, K.
Title In situ macro X-ray fluorescence (MA-XRF) scanning as a non-invasive tool to probe for subsurface modifications in paintings by PP Rubens Type A1 Journal article
Year 2018 Publication Microchemical journal Abbreviated Journal (up) Microchem J
Volume 138 Issue 138 Pages 238-245
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Within the last decade, the established synchrotron- and laboratory-based micro-XRF scanning technology inspired the development of mobile instruments that allow performing in situ experiments on paintings on a macro scale. Since the development of the first mobile scanner at the start of this decade, this chemical imaging technique has brought new insights with respect to several iconic paintings, especially in cases when standard imaging techniques such as X-Ray Radiography (XRR) or Infrared Refiectography (IRR) yielded ambiguous results. The ability of scanning MA-XRF to visualise the distribution of elements detected at and below the paint surface renders this spectrometric method particularly helpful for studying painting techniques and revealing materials that remain hidden below the paint surface. The latter aspect is especially relevant for the technical study of works by Pieter Paul Rubens (1577-1640) as this highly productive seventeenth century master is particularly renowned for the continuous application of modifications during (and even after) the entire course of the creative process. In this work, the added value of MA-XRF scanning experiments for visualising these subsurface features is exemplified by interpreting the chemical images obtained on three of Rubens' key works. Special attention is given to three types of adjustments that are particularly relevant for the technical study of Rubens' oeuvre: (1) compositional changes ('pentimenti'), exemplified by results obtained on The Portrait of Helene Fourment (ca. 1638), (2) extensions to the support ('Anstlickungen.), illustrated by imaging experiments performed on the Venus Frigida (1614) and (3) Rubens' intriguing halos around flesh tones, as found amongst others in The Incredulity of Saint Thomas (1613). The ensuing insights in the paint stratigraphy and the underlying supporting structure illustrate the potential of MA-XRF scanning for the non-invasive, comparative study of Rubens' oeuvre. The results do not only augment the understanding of the complex genesis of Rubens' works of art and his efficient painting technique, but prove valuable during conservation treatments as well, as addressed in this paper. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428103000027 Publication Date 2018-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 5 Open Access
Notes ; ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:151564 Serial 5657
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Alfeld, M.; Noble, P.; van Loon, A.; Delaney, J.; Conover, D.; Zeibel, J.; Dik, J.
Title Rembrandt's 'Saul and David' (c. 1652) : use of multiple types of smalt evidenced by means of non-destructive imaging Type A1 Journal article
Year 2016 Publication Microchemical journal Abbreviated Journal (up) Microchem J
Volume 126 Issue Pages 515-523
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The painting Saul and David, considered to date from c. 1652 and previously attributed to Rembrandt van Rijn and/or his studio, is a complex work of art that has been recently subjected to intensive investigation and conservation treatment. The goal of the research was to give insight into the painting's physical construction and condition in preparation for conservation treatment. It was also anticipated that analysis would shed light on authenticity questions and Rembrandt's role in the creation of the painting. The painting depicts the Old Testament figures of King Saul and David. At left is Saul, seated, holding a spear and wiping a tear from his eye with a curtain. David kneels before him at the right playing his harp. In the past, the large sections with the life-size figures were cut apart and later reassembled. A third piece of canvas was added to replace a missing piece of canvas above the head of David. As part of the investigation into the authenticity of the curtain area, a number of paint micro samples were examined with LM and SEM-EDX. Given that the earth, smalt and lake pigments used in the painting could not be imaged with traditional imaging techniques, the entire painting was also examined with state of the art non-destructive imaging techniques. Special attention was devoted to the presence of cobalt-containing materials, specifically the blue glass pigment smalt considered characteristic for the late Rembrandt. A combination of quantitative electron microprobe analysis and macroscopic X-ray fluorescence scanning revealed that three types of cobalt-containing materials are present in the painting. The first type is a cobalt drier that was found in the overpaint used to cover up the canvas inset and the joins that were added in the 19th century. The other two Co-containing materials are part of the original paint used by Rembrandt and comprise two varieties of smalt, a K-rich glass pigment that derives its gray-blue color by doping with Co-ions. Smalt paint with a higher Ni content (NiO:CoO ratio of around 1:4) was used to depict the blue stripes in Saul's colorful turban, while smalt with a lower Ni content was employed (NiO:CoO ratio of around 1:5) for the broad expanses of Saul's garments. The presence of two types of smalt not only supports the recent re-attribution of the painting to Rembrandt, but also that the picture was painted in two phases. Saul's dark red garment is painted in a rough, “loose” manner and the now discolored smalt-rich layer was found to have been partially removed during a past restoration treatment/s. In contrast, the blue-green smalt in the turban is much better preserved and provides a colorful accent. While the use of different types of smalt in a Rembrandt painting has been previously identified using quantitative EDX analysis of paint cross-sections, to the best of our knowledge this is the first time such a distinction has been observed in a 17th-century painting using non-destructive imaging techniques. In addition to the XRF-based non-invasive elemental mapping, hyperspectral imaging in the visual to near-infrared (VNIR) region was also carried out. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373647500063 Publication Date 2016-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 18 Open Access
Notes ; This research is part of the ReVisualising late Rembrandt: Developing and Applying New Imaging Techniques research project, supported by the Science4Arts research program of the Netherlands Organisation for Scientific Research (NWO, The Hague, NL, ReVisRembrandt project) and the National Science Foundation (NSF, Washington DC, USA, award 1041827). We would like to thank colleagues of the Mauritshuis (The Hague, NL) and the Dutch Cultural Heritage Agency (RCE) in Rijswijk, NL for their support and assistance during the scanning of the Saul and David painting. The GOA project “SOLARPAINT” (University of Antwerp) and the Fund Baillet Latour (Brussels, B) are acknowledged for financial support to GvdS and KJ. We also like to acknowledge the help of Eliza Longhini and Stijn Legrand during some of the XRF scanning stages. ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:133258 Serial 5813
Permanent link to this record
 

 
Author Alfeld, M.; Wahabzada, M.; Bauckhage, C.; Kersting, K.; van der Snickt, G.; Noble, P.; Janssens, K.; Wellenreuther, G.; Falkenberg, G.
Title Simplex Volume Maximization (SiVM): a matrix factorization algorithm with non-negative constrains and low computing demands for the interpretation of full spectral X-ray fluorescence imaging data Type A1 Journal article
Year 2017 Publication Microchemical journal Abbreviated Journal (up) Microchem J
Volume 132 Issue Pages 179-184
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Technological progress allows for an ever-faster acquisition of hyperspectral data, challenging the users to keep up with interpreting the recorded data. Matrix factorization, the representation of data sets by bases (or loads) and coefficient (or score) images is long used to support the interpretation of complex data sets. We propose in this publication Simplex Volume Maximization (SiVM) for the analysis of X-ray fluorescence (XRF) imaging data sets. SiVM selects archetypical data points that represents the data set and thus provides easily understandable bases, preserves the non-negative character of XRF data sets and has low demands concerning computing resources. We apply SiVM on an XRF data set of Hans Memling's Portrait of a man from the Lespinette family from the collection of the Mauritshuis (The Hague, NL) and discuss capabilities and shortcomings of SiVM. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399845700026 Publication Date 2017-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 8 Open Access
Notes ; The German Federal Ministry of Education and Research (BMBF) is acknowledged for the financial support (Verbundprojekt 05K2012 POISSON: Fortschrittliche Faktorenanalyse ffir Poisson-verteilte Daten). ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:152647 Serial 5830
Permanent link to this record
 

 
Author Gestels, A.; Van der Snickt, G.; Caen, J.; Nuyts, G.; Legrand, S.; Vanmeert, F.; Detry, F.; Janssens, K.; Steenackers, G.
Title Combined MA-XRF, MA-XRPD and SEM-EDX analysis of a medieval stained-glass panel formerly from Notre Dame, Paris reveals its material history Type A1 Journal article
Year 2022 Publication Microchemical journal Abbreviated Journal (up) Microchem J
Volume 177 Issue Pages 107304
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract As part of its conservation-restoration, the 13th century stained-glass panel ‘the Annunciation’, was examined at the micro- and macro level. This window, since 1898 in the collection of the Museum Mayer Van den Bergh (Antwerp, B), was formerly a part of the southern Rose window of the Notre Dame Cathedral (Paris, F). The insigths emerging from a first phase of the analysis, comprising non-invasive analysis techniques such as optical microscopy combined with macroscopic X-ray fluorescence (MA-XRF) and X-ray diffraction (MA-XRPD) mapping, were used to select sampling positions for the second phase of investigation that involved micro-invasive analysis, namely scanning-electron microscopy coupled to energy-dispersive X-ray analysis (SEM-EDX). The aim of the investigation was fourfold: (1) to assess the applicability of MA-XRF scanning for the characterisation of stained glass windows prior to any conservation or restoration procedure, (2) to assess the applicability of MA-XRPD scanning to identify the degradation products formed on the surface of stained glass windows, (3) to establish a method to limit the set of sampled glass fragments taken from a glass panel for quantititive analysis while maintaining sufficient representativeness and (4) to distinguish the original glass panes and grisaille paint from non-original glass panes that were inserted during various past interventions. Most of the panes in this window proved to consist of medieval potash glass, consistent with the 13th c. origin of the window while a limited number of panes were identified as non-original infills, with divergent glass compositional types and/or colorants. Most panes derive their color from the pot metal glass (i.e. homogenously colored) they were made of. Some of the panes that originally had a red flashed layer on their surface, completely or partially lost this layer due to weathering. Three main compositional glass families with similar color could be defined. With the exception of the yellow and orange panes, the chromophoric elements responsible for the dark(er) and light(er) blue (Co), green (Cu), purple (Mn) and red colors (Cu) were identified. Two different grisaille paints were encountered, part of which were restored during the 19th century. On the basis of this information, all missing pieces were replaced by glass panes with appropriate colors and the panel could be successfully conserved to its former glory. On the surface of several panes, typical glass degradation products such as calcite, syngenite and gypsum were identified, together with lead based degradation products such as anglesite and palmierite. In addition, the presence of hematite and melanotekite in the grisailles was observed; also the presence of Zn, uncorrelated to Cu, in the grissailes on the right side of the window became apparent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000850000900001 Publication Date 2022-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.8
Call Number UA @ admin @ c:irua:187493 Serial 7138
Permanent link to this record
 

 
Author Álvarez-Martín, A.; De Winter, S.; Nuyts, G.; Hermans, J.; Janssens, K.; van der Snickt, G.
Title Multi-modal approach for the characterization of resin carriers in Daylight Fluorescent Pigments Type A1 Journal article
Year 2020 Publication Microchemical Journal Abbreviated Journal (up) Microchem J
Volume 159 Issue Pages 105340
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract Almost seventy years after artists such as Frank Stella (1936), Andy Warhol (1928-1987), James Rosenquist (1933-2017), Herb Aach (1923-1985) and Richard Bowman (1918-2001) started to incorporate Daylight Fluorescent Pigments (DFPs) in their artworks, the extent of the conservation problems that are associated with these pigments has increased progressively. Since their first appearance on the market, their composition has constantly been improved in terms of permanency. However, conservation practices on the artworks that are used in, are complicated by the fact that the composition of DFPs is proprietary and the information provided by the manufactures is limited. To be able to propose adequate conservation strategies for artworks containing DFPs, a thorough understanding of the DFPs composition must be acquired. In contrast with previous research that concentrated on identification of the coloring dye, this paper focuses on the characterization of the resin, used as the carrier for the dye. The proposed approach, involving ATR-FTIR, SPME-GC-MS and XRF analysis, provided additional insights on the organic and inorganic components of the resin. Using this approach, we investigated historical DFPs and new formulations, as well as different series from the main manufacturing companies (DayGlo, Swada, Radiant Color and Kremer) in order to obtain a full characterization of DFPs used by the artists along the years. First, the initial PCA-assisted ATR-FTIR spectroscopy allowed for an efficient classification of the main monomers in the resin polymer. Next, a further distinction was made by mass spectrometry and XRF which were optimized to allow a more specific classification of the resin and for detection of additives. In this paper we show the potential of SPME-GC-MS, never applied for the characterization of artistic materials, at present undervalued for heritage science purposes. We anticipate that this information will be highly relevant in the future stability studies and for defining (preventive) conservation strategies of fluorescent artworks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000598761400009 Publication Date 2020-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.8 Times cited Open Access
Notes Approved Most recent IF: 4.8; 2020 IF: 3.034
Call Number UA @ admin @ c:irua:175083 Serial 8286
Permanent link to this record
 

 
Author Schalm, O.; van der Linden, V.; Frederickx, P.; Luyten, S.; van der Snickt, G.; Caen, J.; Schryvers, D.; Janssens, K.; Cornelis, E.; van Dyck, D.; Schreiner, M.
Title Enamels in stained glass windows: preparation, chemical composition, microstructure and causes of deterioration Type A1 Journal article
Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal (up) Spectrochim Acta B
Volume 64 Issue 8 Pages 812-820
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Vision lab
Abstract Stained glass windows incorporating dark blue and purple enamel paint layers are in some cases subject to severe degradation while others from the same period survived the ravages of time. A series of dark blue, greenblue and purple enamel glass paints from the same region (Northwestern Europe) and from the same period (16early 20th centuries) has been studied by means of a combination of microscopic X-ray fluorescence analysis, electron probe micro analysis and transmission electron microscopy with the aim of better understanding the causes of the degradation. The chemical composition of the enamels diverges from the average chemical composition of window glass. Some of the compositions appear to be unstable, for example those with a high concentration of K2O and a low content of CaO and PbO. In other cases, the deterioration of the paint layers was caused by the less than optimal vitrification of the enamel during the firing process. Recipes and chemical compositions indicate that glassmakers of the 1617th century had full control over the color of the enamel glass paints they made. They mainly used three types of coloring agents, based on Co (dark blue), Mn (purple) and Cu (light-blue or greenblue) as coloring elements. Bluepurple enamel paints were obtained by mixing two different coloring agents. The coloring agent for redpurple enamel, introduced during the 19th century, was colloidal gold embedded in grains of lead glass.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000269995300018 Publication Date 2009-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 28 Open Access
Notes Iuap Vi/6; Fwo; Goa Approved Most recent IF: 3.241; 2009 IF: 2.719
Call Number UA @ lucian @ c:irua:79647 Serial 1035
Permanent link to this record
 

 
Author van der Snickt, G.; Schalm, O.; Caen, J.; Janssens, K.; Schreiner, M.
Title Blue enamel on sixteenth- and seventeenth-century window glass : deterioration, microstructure, composition and preparation Type A1 Journal article
Year 2006 Publication Studies in conservation Abbreviated Journal (up) Stud Conserv
Volume 51 Issue Pages 212-222
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000241941100006 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-3630; 2047-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.578 Times cited 8 Open Access
Notes Approved Most recent IF: 0.578; 2006 IF: 0.609
Call Number UA @ admin @ c:irua:60712 Serial 5492
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Vanmeert, F.; Legrand, S.; Nuyts, G.; Alfeld, M.; Monico, L.; Anaf, W.; de Nolf, W.; Vermeulen, M.; Verbeeck, J.; De Wael, K.
Title Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-Ray methods Type A1 Journal article
Year 2016 Publication Topics in Current Chemistry Abbreviated Journal (up) Topics Curr Chem
Volume 374 Issue 374 Pages 81
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.
Address
Corporate Author Thesis
Publisher Springer international publishing ag Place of Publication Cham Editor
Language Wos 000391178900006 Publication Date 2016-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2365-0869;2364-8961; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.033 Times cited 50 Open Access
Notes ; ; Approved Most recent IF: 4.033
Call Number UA @ lucian @ c:irua:139930UA @ admin @ c:irua:139930 Serial 4443
Permanent link to this record
 

 
Author Janssens, K.; de Nolf, W.; van der Snickt, G.; Vincze, L.; Vekemans, B.; Terzano, R.; Brenker, F.E.
Title Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis Type A1 Journal article
Year 2010 Publication Trends in analytical chemistry Abbreviated Journal (up) Trac-Trend Anal Chem
Volume 29 Issue 6 Pages 464-478
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000279235000014 Publication Date 2010-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-9936 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.442 Times cited 48 Open Access
Notes ; This research was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of FWO (Brussels, Belgium) projects nr. G.0704.08 and G.0179.09 and from the UA-BOF GOA programme. ; Approved Most recent IF: 8.442; 2010 IF: 6.602
Call Number UA @ admin @ c:irua:83903 Serial 5806
Permanent link to this record
 

 
Author van der Snickt, G.; Janssens, K.; Schalm, O.; Aibéo, C.; Kloust, H.; Alfeld, M.
Title James Ensor's pigment use: artistic and material evolution studied by means of portable X-ray fluorescence spectrometry Type A1 Journal article
Year 2010 Publication X-ray spectrometry Abbreviated Journal (up) X-Ray Spectrom
Volume 39 Issue 2 Pages 103-111
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In this paper, portable X-ray fluorescence spectrometry (PXRF) was employed as a screening tool for determining and comparing the pigment use in a large series of paintings by the Belgian artist James Ensor (1860-1949). Benefits and drawbacks of PXRF as a method, and the instrument employed, are discussed from a practical, conservation and instrumental perspective. Regardless of several restrictions due to the set-up and/or the analytical method, it appeared feasible to document the evolution with time in Ensor's use of inorganic pigments and to correlate this technical evolution with stylistic developments, Nevertheless, it became clear that a full identification of all materials present can only be done by means of the analysis of (cross-sectioned) samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000275959400006 Publication Date 2009-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.298 Times cited 25 Open Access
Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (IUAP VI/16). The staff of the different museums and private institutions is acknowledged for rendering their assistance to this research, i.e. by making all paintings available for analysis and authorising the publication of the images in this article. Therefore, a word of gratitude to Paul Huvenne, Yolande Deckers, Herwig Todts, Stef Antonissen, Gwen Borms and Lizet Klaassen of the Koninklijk Museum voor Schone Kunsten Antwerpen (KMSKA), Luuk Van der Loeff of the Kroller-Muller Museum in Otterlo and Mireille Engel, Barbara De Jong of the Musea aan Zee (MuZee), Patricia Jaspers of the Dexia bank, Hildegard Van de Velde of the KBC bank and Frederik Leen of the Koninklijke Musea voor Schone Kunsten van Belgie (KMSKB). Special thanks to Xavier Tricot and the other members of the Ensor committee for their valuable feedback. ; Approved Most recent IF: 1.298; 2010 IF: 1.661
Call Number UA @ admin @ c:irua:82324 Serial 5680
Permanent link to this record
 

 
Author Cagno, S.; van der Snickt, G.; Legrand, S.; Caen, J.; Patin, M.; Meulebroeck, W.; Dirkx, Y.; Hillen, M.; Steenackers, G.; Rousaki, A.; Vandenabeele, P.; Janssens, K.
Title Comparison of four mobile, non‐invasive diagnostic techniques for differentiating glass types in historical leaded windows : MA‐XRF , UV–Vis–NIR, Raman spectroscopy and IRT Type A1 Journal article
Year 2020 Publication X-Ray Spectrometry Abbreviated Journal (up) X-Ray Spectrom
Volume Issue Pages xrs.3185-17
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract This paper critically compares the performance of four non-invasive techniques that match the accuracy, flexibility, time-efficiency, and transportability required for in situ characterization of leaded glass windows: macroscopic X-ray fluorescence imaging (MA-XRF), UV-Vis-NIR, Raman spectroscopy, and infrared thermography (IRT). In order to compare the techniques on equal grounds, all techniques were tested independently of each other by separate research groups on the same historical leaded window tentatively dated to the 17th century, without prior knowledge. The aim was to assess the ability of these techniques to document the conservation history of the window by classifying and grouping the colorless glass panes, based on differences in composition. IRT, MA-XRF and UV-Vis-NIR spectroscopy positively distinguished at least two glass groups, with MA-XRF providing the most detailed chemical information. In particular, based on the ratio between the network modifier (K) and network stabilizer (Ca) and on the level of colorants and decolorizers (Fe, Mn, As), the number of plausible glass families could be strongly reduced. In addition, UV-Vis-NIR detected cobalt at ppm level and gave more specific information on the chromophore Fe2+/Fe(3+)ratio. Raman spectroscopy was hampered by fluorescence caused by the metal ions of the decolorizer in most of the panes, but nevertheless identified one group as HLLA.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000561869600001 Publication Date 2020-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.2 Times cited Open Access
Notes ; Belgian Federal Science Policy Office, Grant/Award Number: BR/175/A3/FENESTRA; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: 12X1919N; Baillet-Latour Fund ; Approved Most recent IF: 1.2; 2020 IF: 1.298
Call Number UA @ admin @ c:irua:170972 Serial 6473
Permanent link to this record