|   | 
Details
   web
Records
Author Kurttepeli, M.; Deng, S.; Mattelaer, F.; Cott, D.J.; Vereecken, P.; Dendooven, J.; Detavernier, C.; Bals, S.
Title Heterogeneous TiO2/V2O5/Carbon Nanotube Electrodes for Lithium-Ion Batteries Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal (down) Acs Appl Mater Inter
Volume 9 Issue 9 Pages 8055-8064
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Vanadium pentoxide (V2O5) is proposed and investigated as a cathode material for lithium-ion (Li-ion) batteries. However, the dissolution of V2O5 during the charge/discharge remains as an issue at the V2O5–electrolyte interface. In this work, we present a heterogeneous nanostructure with carbon nanotubes supported V2O5/titanium dioxide (TiO2) multilayers as electrodes for thin-film Li-ion batteries. Atomic layer deposition of V2O5 on carbon nanotubes provides enhanced Li storage capacity and high rate performance. An additional TiO2 layer leads to increased morphological stability and in return higher electrochemical cycling performance of V2O5/carbon nanotubes. The physical and chemical properties of TiO2/V2O5/carbon nanotubes are characterized by cyclic voltammetry and charge/discharge measurements as well as electron microscopy. The detailed mechanism of the protective TiO2 layer to improve the electrochemical cycling stability of the V2O5 is unveiled.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000396186000021 Publication Date 2017-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 28 Open Access OpenAccess
Notes European Research Council, 239865 335078 ; Fonds Wetenschappelijk Onderzoek; Agentschap voor Innovatie door Wetenschap en Technologie, 18142 ; Bijzonder Onderzoeksfonds, GOA – 01G01513 ; This research was funded by the Flemish research foundation FWO-Vlaanderen, by the European Research Council (Starting Grant No. 239865 and No. 335078), by IWT-Flanders (SBO project IWT 18142 “SoS-Lion”) and by the Special Research Fund BOF of Ghent University (GOA – 01G01513); colouratoms (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 7.504
Call Number EMAT @ emat @ c:irua:142446UA @ admin @ c:irua:142446 Serial 4572
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A.
Title Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S,Se,Te) chalchogenide templates Type A1 Journal article
Year 2014 Publication 2D materials Abbreviated Journal (down) 2D Mater
Volume 1 Issue 1 Pages 011010
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract By using first-principles simulations, we investigate the interaction of a 2D silicon layer with two classes of chalcogenide-layered compounds, namely MoX2 and GaX (X = S, Se, Te). A rather weak (van der Waals) interaction between the silicene layers and the chalcogenide layers is predicted. We found that the buckling of the silicene layer is correlated to the lattice mismatch between the silicene layer and the MoX2 or GaX template. The electronic properties of silicene on these different templates largely depend on the buckling of the silicene layer: highly buckled silicene on MoS2 is predicted to be metallic, while low buckled silicene on GaS and GaSe is predicted to be semi-metallic, with preserved Dirac cones at the K points. These results indicate new routes for artificially engineering silicene nanosheets, providing tailored electronic properties of this 2D layer on non-metallic substrates. These non-metallic templates also open the way to the possible integration of silicene in future nanoelectronic devices.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000353649900011 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 49 Open Access
Notes Approved Most recent IF: 6.937; 2014 IF: NA
Call Number UA @ lucian @ c:irua:126032 Serial 1048
Permanent link to this record
 

 
Author Van Eyndhoven, G.; Batenburg, K.J.; van Oers, C.; Kurttepeli, M.; Bals, S.; Cool, P.; Sijbers, J.
Title Reliable pore-size measurements based on a procedure specifically designed for electron tomography measurements of nanoporous samples Type P3 Proceeding
Year 2014 Publication Abbreviated Journal (down)
Volume Issue Pages
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT); Vision lab; Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:124548 Serial 2866
Permanent link to this record
 

 
Author Kurttepeli, M.
Title Carbon based materials and hybrid nanostructures investigated by advanced transmission electron microscopy Type Doctoral thesis
Year 2015 Publication Abbreviated Journal (down)
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:130502 Serial 4145
Permanent link to this record
 

 
Author Cardinali, M.; De Ruggieri, M.B.; Leone, G.; Prohaska, W.; Alfeld, M.; Janssens, K.
Title The rediscovered portrait of Prospero Farinacci by Caravaggio Type A1 Journal article
Year 2016 Publication Artibus et historiae : an art anthology Abbreviated Journal (down)
Volume Issue 73 Pages 249-284
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Caravaggio's early production as a portrait painter is still the subject of research and a fount of enigmas. Despite the numerous citations in documents, only rarely have these been linked unequivocally to paintings known to date. This is also the case with the `portrait of Farinaccio criminalist painted on a head-size canvas believed to be by Michelangelo from Caravaggio', that was listed in the 1638 inventory of the Marquis Giustiniani and with `the speaker wearing a robe, painted by Caravaggio' on a head-size canvas, owned in 1652 by Caterina Campani, Onorio Longhi's wife. The present multidisciplinary research examines the rediscovery of the portrait of Prospero Farinacci by Caravaggio. The painting, undisclosed until now, hides an underlying female portrait. The authors investigate both compositions from a technical, iconographical and critical point of view, supporting Caravaggio's attribution. The technical researches allow cross-validation in the brushwork and materials of the picture, compared to Caravaggio's early painting technique and style. The portrait of Maffeo Barberini, recently re-ascribed to Caravaggio, shows a significant similarity, while the underlying woman of the retrieved painting closely resembles the gipsy of the Louvre Fortune Teller. In addition, a newly introduced and advanced imaging technique (MaXRF) has detected on the male portrait the feature of the lawyer's robe, which supports the identification with Prospero Farinacci. The intriguing topic of physiognomic accuracy versus stylizing tendency in Caravaggio's portraiture is considered with the aid of Giulio Mancini's observations. Besides, the possible interpretation of the underlying figure as a religious subject sheds a light on the obscure activity of the young Caravaggio in Lorenzo Carli's workshop, recently brought to scholars' attention by new documents and hypotheses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0391-9064 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:152697 Serial 5875
Permanent link to this record
 

 
Author Sarikurt, S.; Çakir, D.; Keceli, M.; Sevik, C.
Title The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers Type A1 Journal article
Year 2018 Publication Nanoscale Abbreviated Journal (down)
Volume 10 Issue 18 Pages 8859-8868
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The newest members of a two-dimensional material family, involving transition metal carbides and nitrides (called MXenes), have garnered increasing attention due to their tunable electronic and thermal properties depending on the chemical composition and functionalization. This flexibility can be exploited to fabricate efficient electrochemical energy storage (batteries) and energy conversion (thermoelectric) devices. In this study, we calculated the Seebeck coefficients and lattice thermal conductivity values of oxygen terminated M2CO2 (where M = Ti, Zr, Hf, Sc) monolayer MXene crystals in two different functionalization configurations (model-II (MD-II) and model-III (MD-III)), using density functional theory and Boltzmann transport theory. We estimated the thermoelectric figure-of-merit, zT, of these materials by two different approaches, as well. First of all, we found that the structural model (i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials. The lattice thermal conductivity kappa(l), Seebeck coefficient and zT values may vary by 40% depending on the structural model. The MD-III configuration always has the larger band gap, Seebeck coefficient and zT, and smaller kappa(l) as compared to the MD-II structure due to a larger band gap, highly flat valence band and reduced crystal symmetry in the former. The MD-III configuration of Ti2CO2 and Zr2CO2 has the lowest kappa(l) as compared to the same configuration of Hf2CO2 and Sc2CO2. Among all the considered structures, the MD-II configuration of Hf2CO2 has the highest kappa(l), and Ti2CO2 and Zr2CO2 in the MD-III configuration have the lowest kappa(l). For instance, while the band gap of the MD-II configuration of Ti2CO2 is 0.26 eV, it becomes 0.69 eV in MD-III. The zT(max) value may reach up to 1.1 depending on the structural model of MXene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000432096400055 Publication Date 2018-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193788 Serial 8654
Permanent link to this record
 

 
Author Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C.
Title Gaussian approximation potentials for accurate thermal properties of two-dimensional materials Type A1 Journal article
Year 2023 Publication Nanoscale Abbreviated Journal (down)
Volume 15 Issue 19 Pages 8772-8780
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional materials (2DMs) continue to attract a lot of attention, particularly for their extreme flexibility and superior thermal properties. Molecular dynamics simulations are among the most powerful methods for computing these properties, but their reliability depends on the accuracy of interatomic interactions. While first principles approaches provide the most accurate description of interatomic forces, they are computationally expensive. In contrast, classical force fields are computationally efficient, but have limited accuracy in interatomic force description. Machine learning interatomic potentials, such as Gaussian Approximation Potentials, trained on density functional theory (DFT) calculations offer a compromise by providing both accurate estimation and computational efficiency. In this work, we present a systematic procedure to develop Gaussian approximation potentials for selected 2DMs, graphene, buckled silicene, and h-XN (X = B, Al, and Ga, as binary compounds) structures. We validate our approach through calculations that require various levels of accuracy in interatomic interactions. The calculated phonon dispersion curves and lattice thermal conductivity, obtained through harmonic and anharmonic force constants (including fourth order) are in excellent agreement with DFT results. HIPHIVE calculations, in which the generated GAP potentials were used to compute higher-order force constants instead of DFT, demonstrated the first-principles level accuracy of the potentials for interatomic force description. Molecular dynamics simulations based on phonon density of states calculations, which agree closely with DFT-based calculations, also show the success of the generated potentials in high-temperature simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000976615200001 Publication Date 2023-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.7; 2023 IF: 7.367
Call Number UA @ admin @ c:irua:196722 Serial 8873
Permanent link to this record
 

 
Author Morad, V.; Stelmakh, A.; Svyrydenko, M.; Feld, L.G.; Boehme, S.C.; Aebli, M.; Affolter, J.; Kaul, C.J.; Schrenker, N.J.; Bals, S.; Sahin, Y.; Dirin, D.N.; Cherniukh, I.; Raino, G.; Baumketner, A.; Kovalenko, M.V.
Title Designer phospholipid capping ligands for soft metal halide nanocrystals Type A1 Journal article
Year 2024 Publication Nature Abbreviated Journal (down)
Volume 626 Issue Pages 542-548
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission. Phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites and lead-free metal halide nanocrystals, which then exhibit enhanced robustness and optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001176943100001 Publication Date 2023-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 64.8 Times cited Open Access
Notes Approved Most recent IF: 64.8; 2024 IF: 40.137
Call Number UA @ admin @ c:irua:204796 Serial 9144
Permanent link to this record
 

 
Author Xu, H.; Li, H.; Gauquelin, N.; Chen, X.; Wu, W.-F.; Zhao, Y.; Si, L.; Tian, D.; Li, L.; Gan, Y.; Qi, S.; Li, M.; Hu, F.; Sun, J.; Jannis, D.; Yu, P.; Chen, G.; Zhong, Z.; Radovic, M.; Verbeeck, J.; Chen, Y.; Shen, B.
Title Giant tunability of Rashba splitting at cation-exchanged polar oxide interfaces by selective orbital hybridization Type A1 Journal article
Year 2024 Publication Advanced materials Abbreviated Journal (down)
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces. An unambiguous cation exchange is discovered across the interfaces of (001), (110), and (111) KTaO3 2D electron gases fabricated at room temperature. Remarkably, the (111) interfaces with the highest superconducting transition temperature also turn out to show the strongest electron-phonon interaction and the largest Rashba spin splitting. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001219658400001 Publication Date 2024-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
Impact Factor 29.4 Times cited Open Access
Notes Approved Most recent IF: 29.4; 2024 IF: 19.791
Call Number UA @ admin @ c:irua:206037 Serial 9152
Permanent link to this record
 

 
Author Brognara, A.; Kashiwar, A.; Jung, C.; Zhang, X.; Ahmadian, A.; Gauquelin, N.; Verbeeck, J.; Djemia, P.; Faurie, D.; Dehm, G.; Idrissi, H.; Best, J.P.; Ghidelli, M.
Title Tailoring mechanical properties and shear band propagation in ZrCu metallic glass nanolaminates through chemical heterogeneities and interface density Type A1 Journal article
Year 2024 Publication Small Structures Abbreviated Journal (down)
Volume Issue Pages 2400011-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The design of high‐performance structural thin films consistently seeks to achieve a delicate equilibrium by balancing outstanding mechanical properties like yield strength, ductility, and substrate adhesion, which are often mutually exclusive. Metallic glasses (MGs) with their amorphous structure have superior strength, but usually poor ductility with catastrophic failure induced by shear bands (SBs) formation. Herein, we introduce an innovative approach by synthesizing MGs characterized by large and tunable mechanical properties, pioneering a nanoengineering design based on the control of nanoscale chemical/structural heterogeneities. This is realized through a simplified model Zr 24 Cu 76 /Zr 61 Cu 39 , fully amorphous nanocomposite with controlled nanoscale periodicity ( Λ , from 400 down to 5 nm), local chemistry, and glass–glass interfaces, while focusing in‐depth on the SB nucleation/propagation processes. The nanolaminates enable a fine control of the mechanical properties, and an onset of crack formation/percolation (>1.9 and 3.3%, respectively) far above the monolithic counterparts. Moreover, we show that SB propagation induces large chemical intermixing, enabling a brittle‐to‐ductile transition when Λ  ≤ 50 nm, reaching remarkably large plastic deformation of 16% in compression and yield strength ≈2 GPa. Overall, the nanoengineered control of local heterogeneities leads to ultimate and tunable mechanical properties opening up a new approach for strong and ductile materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2688-4062 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205798 Serial 9176
Permanent link to this record