Number of records found: 8874
 | 
Citations
 | 
   web
The role of steam treatment on the structure, purity and length distribution of multi-walled carbon nanotubes”. Cabana L, Ke X, Kepić, D, Oro-Solé, J, Tobías-Rossell E, Van Tendeloo G, Tobias G, Carbon 93, 1059 (2015). http://doi.org/10.1016/j.carbon.2015.06.027
toggle visibility
Li Y, Zhang XB, Tao XY, Xu JM, Chen F, Shen LH, Yang XF, Liu F, Van Tendeloo G, Geise HJ (2005) Single phase MgMoO4 as catalyst for the synthesis of bundled multi-wall carbon nanotubes by CVD. Oxford, 1325–1328
toggle visibility
Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane”. Dzhurakhalov AA, Peeters FM, Carbon 49, 3258 (2011). http://doi.org/10.1016/j.carbon.2011.03.052
toggle visibility
Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors”. Tao XY, Zhang XB, Zhang L, Cheng JP, Liu F, Luo JH, Luo ZQ, Geise HJ, Carbon 44, 1425 (2006). http://doi.org/10.1016/j.carbon.2005.11.024
toggle visibility
sp3/sp2 characterization of carbon materials from first-principles calculations: X-ray photoelectron versus high energy electron energy-loss spectroscopy techniques”. Titantah JT, Lamoen D, Carbon 43, 1311 (2005). http://doi.org/10.1016/j.carbon.2005.01.002
toggle visibility
Transformation of C70 peapods into double walled carbon nanotubes”. Launois P, Chorro M, Verberck B, Albouy P-A, Rouzière S, Colson D, Forget A, Noé, L, Kataura H, Monthioux M, Cambedouzou J, Carbon 48, 89 (2010). http://doi.org/10.1016/j.carbon.2009.08.035
toggle visibility
Vertically oriented nickel nanorod/carbon nanofiber core/shell structures synthesized by plasma-enhanced chemical vapor deposition”. He Z, Lee CS, Maurice J-L, Pribat D, Haghi-Ashtiani P, Cojocaru CS, Carbon 49, 4710 (2011). http://doi.org/10.1016/j.carbon.2011.06.075
toggle visibility
Atomic-scale mechanisms of plasma-assisted elimination of nascent base-grown carbon nanotubes”. Khalilov U, Bogaerts A, Neyts EC, Carbon 118, 452 (2017). http://doi.org/10.1016/j.carbon.2017.03.068
toggle visibility
Carbon-rich carbon nitride monolayers with Dirac cones : Dumbbell C4N”. Li L, Kong X, Leenaerts O, Chen X, Sanyal B, Peeters FM, Carbon 118, 285 (2017). http://doi.org/10.1016/J.CARBON.2017.03.045
toggle visibility
Mechanisms of elementary hydrogen ion-surface interactions during multilayer graphene etching at high surface temperature as a function of flux”. Aussems DUB, Bal KM, Morgan TW, van de Sanden MCM, Neyts EC, Carbon 137, 527 (2018). http://doi.org/10.1016/j.carbon.2018.05.051
toggle visibility
Catalyzed growth of encapsulated carbyne”. Khalilov U, Vets C, Neyts EC, Carbon 153, 1 (2019). http://doi.org/10.1016/j.carbon.2019.06.110
toggle visibility
New nanoporous graphyne monolayer as nodal line semimetal : double Dirac points with an ultrahigh Fermi velocity”. Li L, Kong X, Peeters FM, Carbon 141, 712 (2019). http://doi.org/10.1016/J.CARBON.2018.09.078
toggle visibility
A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2N nanosheet”. Bafekry A, Stampfl C, Ghergherehchi M, Shayesteh SF, Carbon 157, 371 (2020). http://doi.org/10.1016/J.CARBON.2019.10.038
toggle visibility
Mechanisms of selective nanocarbon synthesis inside carbon nanotubes”. Khalilov U, Neyts EC, Carbon 171, 72 (2021). http://doi.org/10.1016/j.carbon.2020.08.060
toggle visibility
Entropic and enthalpic factors determining the thermodynamics and kinetics of carbon segregation from transition metal nanoparticles”. Fukuhara S, Bal KM, Neyts EC, Shibuta Y, Carbon 171, 806 (2021). http://doi.org/10.1016/j.carbon.2020.09.059
toggle visibility
Electro-optical properties of monolayer and bilayer boron-doped C₃N: Tunable electronic structure via strain engineering and electric field”. Bafekry A, Yagmurcukardes M, Shahrokhi M, Ghergherehchi M, Carbon 168, 220 (2020). http://doi.org/10.1016/J.CARBON.2020.06.082
toggle visibility
PAI-graphene : a new topological semimetallic two-dimensional carbon allotrope with highly tunable anisotropic Dirac cones”. Chen X, Bouhon A, Li L, Peeters FM, Sanyal B, Carbon 170, 477 (2020). http://doi.org/10.1016/J.CARBON.2020.08.012
toggle visibility
Carbon single-electron point source controlled by Coulomb blockade”. Kleshch VI, Porshyn V, Orekhov AS, Orekhov AS, Lützenkirchen-Hecht D, Obraztsov AN, Carbon 171, 154 (2021). http://doi.org/10.1016/j.carbon.2020.09.008
toggle visibility
Tuning flexoelectricty and electronic properties of zig-zag graphene nanoribbons by functionalization”. Pandey T, Covaci L, Peeters FM, Carbon 171, 551 (2021). http://doi.org/10.1016/J.CARBON.2020.09.028
toggle visibility
3D arrangement of epitaxial graphene conformally grown on porousified crystalline SiC”. Veronesi S, Pfusterschmied G, Fabbri F, Leitgeb M, Arif O, Esteban DA, Bals S, Schmid U, Heun S, Carbon 189, 210 (2022). http://doi.org/10.1016/j.carbon.2021.12.042
toggle visibility
Tunable natural terahertz and mid-infrared hyperbolic plasmons in carbon phosphide”. Dehdast M, Valiollahi Z, Neek-Amal M, Van Duppen B, Peeters FM, Pourfath M, Carbon 178, 625 (2021). http://doi.org/10.1016/J.CARBON.2021.03.040
toggle visibility
Oxidation and degradation of native wheat starch by acidic bromate in water at room temperature”. Komulainen S, Verlackt C, Pursiainen J, Lajunen M, Carbohydrate Polymers 93, 73 (2013). http://doi.org/10.1016/j.carbpol.2012.06.001
toggle visibility
Reduction of Human Glioblastoma Spheroids Using Cold Atmospheric Plasma: The Combined Effect of Short- and Long-Lived Reactive Species”. Privat-Maldonado A, Gorbanev Y, Dewilde S, Smits E, Bogaerts A, Cancers 10, 394 (2018). http://doi.org/10.3390/cancers10110394
toggle visibility
Synergistic Effects of Melittin and Plasma Treatment: A Promising Approach for Cancer Therapy”. Shaw P, Kumar N, Hammerschmid D, Privat-Maldonado A, Dewilde S, Bogaerts A, Cancers 11, 1109 (2019). http://doi.org/10.3390/cancers11081109
toggle visibility
Risk Assessment of kINPen Plasma Treatment of Four Human Pancreatic Cancer Cell Lines with Respect to Metastasis”. Bekeschus S, Freund E, Spadola C, Privat-Maldonado A, Hackbarth C, Bogaerts A, Schmidt A, Wende K, Weltmann K-D, von Woedtke T, Heidecke C-D, Partecke L-I, Käding A, Cancers 11, 1237 (2019). http://doi.org/10.3390/cancers11091237
toggle visibility
Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment”. Biscop, Lin, Boxem, Loenhout, Backer, Deben, Dewilde, Smits, Bogaerts, Cancers 11, 1287 (2019). http://doi.org/10.3390/cancers11091287
toggle visibility
Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells”. Van Loenhout J, Flieswasser T, Freire Boullosa L, De Waele J, Van Audenaerde J, Marcq E, Jacobs J, Lin A, Lion E, Dewitte H, Peeters M, Dewilde S, Lardon F, Bogaerts A, Deben C, Smits E, Cancers 11, 1597 (2019). http://doi.org/10.3390/cancers11101597
toggle visibility
Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments”. Privat-Maldonado A, Bengtson C, Razzokov J, Smits E, Bogaerts A, Cancers 11, 1920 (2019). http://doi.org/10.3390/cancers11121920
toggle visibility
Plasma in Cancer Treatment”. Privat-Maldonado A, Bogaerts A, Cancers 12, 2617 (2020). http://doi.org/10.3390/cancers12092617
toggle visibility
Cold Atmospheric Plasma Treatment for Pancreatic Cancer–The Importance of Pancreatic Stellate Cells”. Verloy R, Privat-Maldonado A, Smits E, Bogaerts A, Cancers 12, 2782 (2020). http://doi.org/10.3390/cancers12102782
toggle visibility