|   | 
Details
   web
Records
Author Kempenaers, L.; Vincze, L.; Janssens, K.
Title The use of synchrotron micro-XRF for characterisation of the micro-heterogeneity of low-Z reference materials containing heavy metals Type H3 Book chapter
Year 1999 Publication Abbreviated Journal (down)
Volume Issue Pages
Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:28443 Serial 5901
Permanent link to this record
 

 
Author Centeno, S.A.; Hale, C.; Caro, F.; Cesaratto, A.; Shibayama, N.; Delaney, J.; Dooley, K.; van der Snickt, G.; Janssens, K.; Stein, S.A.
Title Van Gogh's Irises and Roses : the contribution of chemical analyses and imaging to the assessment of color changes in the red lake pigments Type A1 Journal article
Year 2017 Publication Heritage science Abbreviated Journal (down)
Volume 5 Issue Pages 18
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Vincent van Gogh's still lifes Irises and Roses were investigated to shed light onto the degree to which the paintings had changed, both individually and in relation to each other since they were painted, particularly in regard to the fading of the red lakes. Non-invasive techniques, including macroscopic X-ray fluorescence mapping, reflectance imaging spectroscopy, and X-radiography, were combined with microanalytical techniques in a select number of samples. The in-depth microchemical analysis was necessary to overcome the complications that arise when evaluating by non-invasive methods alone the compositions of passages with complex layering and mixing of paints. The results obtained by these two approaches were complemented by color measurements performed on paint cross-sections and on protected edges, and with historical information provided by the artist's own descriptions, early reviews and reproductions, and the data was used to carry out digital color simulations that provided, to a certain extent, a visualization of how the paintings may have originally appeared.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401365400001 Publication Date 2017-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 21 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:143748 Serial 5903
Permanent link to this record
 

 
Author Anitha, A.; Brasoveanu, A.; Duarte, M.F.; Hughes, S.M.; Daubechies, I.; Dik, J.; Janssens, K.; Alfeld, M.
Title Virtual underpainting reconstruction from X-ray fluorescence imaging data Type P1 Proceeding
Year 2011 Publication Abbreviated Journal (down)
Volume Issue Pages 1239-1243
Keywords P1 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:124612 Serial 5905
Permanent link to this record
 

 
Author Janssens, K.
Title X-ray based methods of analysis Type H3 Book chapter
Year 2004 Publication Abbreviated Journal (down)
Volume Issue Pages 129-226
Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:50846 Serial 5910
Permanent link to this record
 

 
Author Janssens, K.
Title X-ray fluorescence analysis Type H3 Book chapter
Year 2003 Publication Abbreviated Journal (down)
Volume Issue Pages
Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:42918 Serial 5912
Permanent link to this record
 

 
Author Chukalina, M.; Simionovici, A.S.; Snigirev, A.; Drakopoulos, M.; Snigireva, I.; Adams, F.; Janssens, K.
Title X-ray fluorescence microtomography Type A3 Journal article
Year 2001 Publication Poverhnost Abbreviated Journal (down)
Volume 3 Issue Pages 40-43
Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:34058 Serial 5914
Permanent link to this record
 

 
Author Simionovici, A.S.; Chukalina, M.; Drakopoulos, M.; Snigireva, I.; Snigirev, A.; Schroer, C.; Lengeler, B.; Janssens, K.; Adams, F.
Title X-ray fluorescence microtomography: experiment and reconstruction Type H3 Book chapter
Year 1999 Publication Abbreviated Journal (down)
Volume Issue Pages 304-310
Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:26196 Serial 5915
Permanent link to this record
 

 
Author Adams, F.; Janssens, K.
Title X-ray microanalysis: a new tool for environmental analysis Type H3 Book chapter
Year 1996 Publication Abbreviated Journal (down)
Volume Issue Pages 183-199
Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:14257 Serial 5916
Permanent link to this record
 

 
Author Vincze, L.; Janssens, K.; Adams, F.
Title X-ray optics for synchrotron-radiation-induced X-ray micro fluorescence at the european synchrotron-radiation facility, Grenoble Type A1 Journal article
Year 1993 Publication Institute of physics conference series Abbreviated Journal (down)
Volume Issue 130 Pages 613-616
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Different optical designs for generating synchrotron x-ray micro beams suitable for use in an X-ray fluorescence microscope using an ESRF bending magnet X-ray source are compared. Attention is devoted to the spatial and energy distribution of the photons in the micro beam and to the minimum detection limits that are achievable with each alternative optical system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1993LW34000126 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-2346 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:104541 Serial 5917
Permanent link to this record
 

 
Author Terzano, R.; al Chami, Z.; Vekemans, B.; Janssens, K.; Miano, T.; Ruggiero, P.
Title μ-XANES speciation of Zn in rhizospheric soil and in edible plants grown on a polluted soil amended with compost Type H3 Book chapter
Year 2007 Publication Abbreviated Journal (down)
Volume Issue Pages
Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:64592 Serial 5918
Permanent link to this record
 

 
Author de Nolf, W.; Vanmeert, F.; Janssens, K.
Title XRDUA : crystalline phase distribution maps by two-dimensional scanning and tomographic (micro) X-ray powder diffraction Type A1 Journal article
Year 2014 Publication Journal of applied crystallography Abbreviated Journal (down)
Volume 47 Issue 3 Pages 1107-1117
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Imaging of crystalline phase distributions in heterogeneous materials, either plane projected or in virtual cross sections of the object under investigation, can be achieved by scanning X-ray powder diffraction employing X-ray micro beams and X-ray-sensitive area detectors. Software exists to convert the two-dimensional powder diffraction patterns that are recorded by these detectors to one-dimensional diffractograms, which may be analysed by the broad variety of powder diffraction software developed by the crystallography community. However, employing these tools for the construction of crystalline phase distribution maps proves to be very difficult, especially when employing micro-focused X-ray beams, as most diffraction software tools have mainly been developed having structure solution in mind and are not suitable for phase imaging purposes. XRDUA has been developed to facilitate the execution of the complete sequence of data reduction and interpretation steps required to convert large sequences of powder diffraction patterns into a limited set of crystalline phase maps in an integrated fashion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336738500031 Publication Date 2014-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8898 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 62 Open Access
Notes ; The authors would like to thank the synchrotron beamline staff at ID15 (ESRF, Grenoble, France), MicroXAS (SLS, Villigen, Switzerland) and PO6/BL-L (Petra III/Hasylab, Hamburg, Germany) for accommodating the experiments presented in this paper. Support from FWO 'Big Science' project G0C1213N as well as from the BELSPO project 'S2ART' (SD/RI/04A) is acknowledged. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:117758 Serial 5920
Permanent link to this record
 

 
Author Padilla, R.; Janssens, K.; van Espen, P.; Van Grieken, R.
Title XRS activities at the Micro & Trace Analysis Centre (MiTAC), University of Antwerp, Belgium Type A3 Journal article
Year 2006 Publication IAEA XRF newsletter Abbreviated Journal (down)
Volume 12 Issue Pages 13-16
Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:65080 Serial 5921
Permanent link to this record
 

 
Author Van der Stighelen, K.; Janssens, K.; van der Snickt, G.; Alfeld, M.; Van Beneden, B.; Demarsin, B.; Proesmans, M.; Marchal, G.; Dik, J.
Title Young Anthony van Dyck revisited : a multidisciplinary approach to a portrait once attributed to Peter Paul Rubens Type A3 Journal article
Year 2014 Publication Art matters : international journal for technical art history Abbreviated Journal (down)
Volume 6 Issue Pages 21-35
Keywords A3 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Part of the collection of the Rubens House in Antwerp is a portrait of young Anthony van Dyck, alternatively attributed to Peter Paul Rubens and his pupil Anthony van Dyck. In order to reconstruct the genesis of the portrait in a manner that improves upon past investigations, a number of high-end technological methods, such as X-radiography, X-ray computer tomography, mammographic tomosynthesis and macroscopic X-ray fluorescence, have been employed to render the overpainted layers visible again. The results of the interdisciplinary examinations of the portrait of the youthful Van Dyck are impressive. The combined results allow the later additions to be peeled away until the original composition can be reached. Several pentimenti are easily discernible and refer to a rather immature hand that makes the authorship of Peter Paul Rubens very unlikely. What emerges is a portrait of an ambitious young man with a luxuriant head of hair and a slightly turned-up collar. The hat and cape were added later. The facial features are more recognisable and the execution of the bold curls points irrefutably in the direction of Anthony van Dyck as the author of his own portrait.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:122562 Serial 5922
Permanent link to this record
 

 
Author Harth, A.; van der Snickt, G.; Schalm, O.; Janssens, K.; Blanckaert, G.
Title The young Van Dyck's fingerprint : a technical approach to assess the authenticity of a disputed painting Type A1 Journal article
Year 2017 Publication Heritage science Abbreviated Journal (down)
Volume 5 Issue Pages 22-13
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract The painting Saint Jerome, part of the collection of the Maagdenhuis Museum (Antwerp, Belgium), is attributed to the young Anthony van Dyck (1613-1621) with reservations. The painting displays remarkable compositional and iconographic similarities with two early Van Dyck works (1618-1620) now in Museum Boijmans van Beuningen (Rotterdam) and Nationalmuseum (Stockholm). Despite these similarities, previous art historical research did not result in a clear attribution to this master. In this study, the works authenticity as a young Van Dyck painting was assessed from a technical perspective by employing a twofold approach. First, technical information on Van Dycks materials and techniques, here identified as his fingerprint, were defined based on a literature review. Second, the materials and techniques of the questioned Saint Jerome painting were characterized by using complementary imaging techniques: infrared reflectography, X-ray radiography and macro X-ray fluorescence scanning. The insights from this non-invasive research were supplemented with analysis of a limited number of cross-sections by means of field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The results demonstrated that the questioned paintings materials and techniques deviate from Van Dycks fingerprint, thus making the authorship of this master very unlikely.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403971300001 Publication Date 2017-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes ; The authors are grateful to the staff of the Maagdenhuis Museum Antwerp, especially to Daniel Christiaens and Rudi van Velthoven, for their cooperation and enthusiastic support. Prof. Em. Claudine A. Chavannes-Mazel and Ph. D. student Alice Taatgen (University of Amsterdam) are acknowledged for the IRR recordings. We also would like to acknowledge Dr. Christina Currie (KIK/IRPA) and Catherine Fondaire (KIK/IRPA) for the XRR, and Eva Grieten (EMAT, University of Antwerp) for the FE-SEM-EDX. Finally, the authors wish to thank Prof. Dr. Katlijne van der Stighelen (University of Leuven) and Prof. Dr. Maximilaan Martens (Ghent University) for their art historical insights and additional comments. This research was supported by the Baillet Latour fund and Research Foundation Flanders (FWO). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:143633 Serial 5923
Permanent link to this record
 

 
Author Pouyet, E.; Cotte, M.; Fayard, B.; Salome, M.; Meirer, F.; Mehta, A.; Uffelman, E.S.; Hull, A.; Vanmeert, F.; Kieffer, J.; Burghammer, M.; Janssens, K.; Sette, F.; Mass, J.
Title 2D X-ray and FTIR micro-analysis of the degradation of cadmium yellow pigment in paintings of Henri Matisse Type A1 Journal article
Year 2015 Publication Applied physics A : materials science & processing Abbreviated Journal (down)
Volume 121 Issue 3 Pages 967-980
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The chemical and physical alterations of cadmium yellow (CdS) paints in Henri Matisse's The Joy of Life (1905-1906, The Barnes Foundation) have been recognized since 2006, when a survey by portable X-ray fluorescence identified this pigment in all altered regions of the monumental painting. This alteration is visible as fading, discoloration, chalking, flaking, and spalling of several regions of light to medium yellow paint. Since that time, synchrotron radiation-based techniques including elemental and spectroscopic imaging, as well as X-ray scattering have been employed to locate and identify the alteration products observed in this and related works by Henri Matisse. This information is necessary to formulate one or multiple mechanisms for degradation of Matisse's paints from this period, and thus ensure proper environmental conditions for the storage and the display of his works. This paper focuses on 2D full-field X-ray Near Edge Structure imaging, 2D micro-X-ray Diffraction, X-ray Fluorescence, and Fourier Transform Infra-red imaging of the altered paint layers to address one of the long-standing questions about cadmium yellow alteration-the roles of cadmium carbonates and cadmium sulphates found in the altered paint layers. These compounds have often been assumed to be photo-oxidation products, but could also be residual starting reagents from an indirect wet process synthesis of CdS. The data presented here allow identifying and mapping the location of cadmium carbonates, cadmium chlorides, cadmium oxalates, cadmium sulphates, and cadmium sulphides in thin sections of altered cadmium yellow paints from The Joy of Life and Matisse's Flower Piece (1906, The Barnes Foundation). Distribution of various cadmium compounds confirms that cadmium carbonates and sulphates are photo-degradation products in The Joy of Life, whereas in Flower Piece, cadmium carbonates appear to have been a [(partially) unreacted] starting reagent for the yellow paint, a role previously suggested in other altered yellow paints.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364914100017 Publication Date 2015-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396; 1432-0630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:130290 Serial 7382
Permanent link to this record
 

 
Author Al-Emam, E.; Soenen, H.; Caen, J.; Janssens, K.
Title Characterization of polyvinyl alcohol-borax/agarose (PVA-B/AG) double network hydrogel utilized for the cleaning of works of art Type A1 Journal article
Year 2020 Publication Heritage science Abbreviated Journal (down)
Volume 8 Issue 1 Pages 106
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract Since cleaning of artworks may cause undesirable physicochemical alterations and is a nonreversible procedure, it is mandatory to adopt the proper cleaning procedure. Such a procedure should remove undesired materials whilst preserving the original surface. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, agarose (AG) and polyvinyl alcohol-borax (PVA-B) hydrogels have been widely employed as cleaning tools by conservators. Both hydrogels show some limitations in specific cleaning practices. In this work, we investigated the influence of including increased levels of agarose into PVA-B systems. For this reason, we performed a detailed characterization on the double network (DN) hydrogel including the chemical structure, the liquid phase retention, the rheological behavior, and the self-healing behavior of various PVA-B/AG double network hydrogels. These new hydrogels revealed better properties than PVA-B hydrogels and obviated their limitations. The inclusion of AG into PVA-B systems enhanced the liquid retention capacity, shape-stability, and mechanical strength of the blend. Furthermore, AG minimized the expelling/syneresis issue that occurs when loading PVA-B systems with low polarity solvents or chelating agents. The resultant double network hydrogel exhibits relevant self-healing properties. The PVA-B/AG double network is a new and useful cleaning tool that can be added to the conservators' tool-kit. It is ideal for cleaning procedures dealing with porous and complex structured surfaces, vertical surfaces and for long time applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000580572500001 Publication Date 2020-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.5 Times cited 1 Open Access
Notes ; Ehab Al-Emam thanks the Egyptian Ministry of Higher Education for funding his Ph.D. scholarship in addition to being grateful to University of Antwerp for additional funding. ; Approved Most recent IF: 2.5; 2020 IF: NA
Call Number UA @ admin @ c:irua:173594 Serial 6466
Permanent link to this record
 

 
Author van der Snickt, G.; Dooley, K.A.; Sanyova, J.; Dubois, H.; Delaney, J.K.; Gifford, E.M.; Legrand, S.; Laquiere, N.; Janssens, K.
Title Dual mode standoff imaging spectroscopy documents the painting process of the Lamb of God in the Ghent Altarpiece by J. and H. Van Eyck Type A1 Journal article
Year 2020 Publication Science Advances Abbreviated Journal (down)
Volume 6 Issue 31 Pages eabb3379
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract The ongoing conservation treatment program of the Ghent Altarpiece by Hubert and Jan Van Eyck, one of the iconic paintings of the west, has revealed that the designs of the paintings were changed several times, first by the original artists, and then during later restorations. The central motif, The Lamb of God, representing Christ, plays an essential iconographic role, and its depiction is important. Because of the prevalence of lead white, it was not possible to visualize the Van Eycks' original underdrawing of the Lamb, their design changes, and the overpaint by later restorers with a single spectral imaging modality. However, by using elemental (x-ray fluorescence) and molecular (infrared reflectance) imaging spectroscopies, followed by analysis of the resulting data cubes, the necessary chemical contrast could be achieved. In this way, the two complementary modalities provided a more complete picture of the development and changes made to the Lamb.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000556543100033 Publication Date 2020-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.6 Times cited Open Access
Notes ; This research was part of the activities of the Chair on Advanced Imaging Techniques for the Arts, established by the Baillet Latour fund. In addition, it was supported by the Belgian Science Policy Office (Project MO/39/011) and the Gieskes-Strijbis fund. We are also indebted to the BOF-GOA SOLARPaint project of the University of Antwerp Research Council and to FWO (Brussels) projects G056619N and G054719N. J.K.D. and K.A.D. acknowledge support from the National Gallery of Art. ; Approved Most recent IF: 13.6; 2020 IF: NA
Call Number UA @ admin @ c:irua:171270 Serial 6494
Permanent link to this record
 

 
Author Monico, L.; Cartechini, L.; Rosi, F.; Chieli, A.; Grazia, C.; De Meyer, S.; Nuyts, G.; Vanmeert, F.; Janssens, K.; Cotte, M.; De Nolf, W.; Falkenberg, G.; Sandu, I.C.A.; Tveit, E.S.; Mass, J.; De Freitas, R.P.; Romani, A.; Miliani, C.
Title Probing the chemistry of CdS paints in The Scream by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques Type A1 Journal article
Year 2020 Publication Science Advances Abbreviated Journal (down)
Volume 6 Issue 20 Pages eaay3514
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The degradation of cadmium sulfide (CdS)-based oil paints is a phenomenon potentially threatening the iconic painting The Scream (ca. 1910) by Edvard Munch (Munch Museum, Oslo) that is still poorly understood. Here, we provide evidence for the presence of cadmium sulfate and sulfites as alteration products of the original CdS-based paint and explore the external circumstances and internal factors causing this transformation. Macroscale in situ noninvasive spectroscopy studies of the painting in combination with synchrotron-radiation x-ray microspectroscopy investigations of a microsample and artificially aged mock-ups show that moisture and mobile chlorine compounds are key factors for promoting the oxidation of CdS, while light (photodegradation) plays a less important role. Furthermore, under exposure to humidity, parallel/secondary reactions involving dissolution, migration through the paint, and recrystallization of water-soluble phases of the paint are associated with the formation of cadmium sulfates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000533573300009 Publication Date 2020-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.6 Times cited 4 Open Access
Notes ; The research was financially supported by the European research project IPERION-CH, funded by the European Commission, H2020-INFRAIA-2014-2015 (grant agreement no. 654028); the project AMIS, within the program Dipartimenti di Eccellenza 2018-2022 (funded by MIUR and University of Perugia); and the program “Ricerca di Base 2017” (funded by University of Perugia). S.D.M. and K.J. acknowledge the GOA Project SolarPaint from the University of Antwerp Research Council and projects G056619N and G054719N from FWO (Brussels). F.V. and K.J. acknowledge support from Interreg Project Smart*Light and thank BELSPO (Brussels) for financial support via FED-tWIN mandate PRF055. L.M. acknowledges the Erasmus+ program (Staff Mobility for training, A. Y. 2018 to 2019) of the European Commission. In situ noninvasive analyses were performed using the European MOLAB platform, which is financially supported by the European project IPERION-CH. For the beamtime grants received, the authors thank the ESRF-ID21 beamline (experiment nos. HG32, HG64, and HG95), DESY-P06 beamline, a member of the Helmholtz Association HGF (experiment nos. I-20130221 EC and I-20160126 EC), and the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. ; Approved Most recent IF: 13.6; 2020 IF: NA
Call Number UA @ admin @ c:irua:169519 Serial 6585
Permanent link to this record
 

 
Author Vanmeert, F.; De Meyer, S.; Gestels, A.; Clerici, E.A.; Deleu, N.; Legrand, S.; Van Espen, P.; Van der Snickt, G.; Alfeld, M.; Dik, J.; Monico, L.; De Nolf, W.; Cotte, M.; Gonzalez, V.; Saverwyns, S.; Depuydt-Elbaum, L.; Janssens, K.
Title Non-invasive and non-destructive examination of artists’ pigments, paints and paintings by means of X-ray imaging methods Type H1 Book chapter
Year 2022 Publication Abbreviated Journal (down)
Volume Issue Pages 317-357
Keywords H1 Book chapter; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Recent studies in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples and/or entire paintings from fifteenth to twentieth century artists are discussed. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging as well as with the combined use with X-ray diffraction (XRD). Microscopic XRF (μ-XRF) is a variant of the XRF method able to visualize the elemental distribution of key elements, mostly metals, on the scale from 1 μm to 100 μm present inside multi-layered micro samples taken from paintings. In the context of the characterization of artists’ pigments subjected to natural degradation, in many cases the use of methods limited to elemental analysis or imaging does not suffice to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS (microscopic X-ray absorption spectroscopy) and μ-XRD have proven themselves to be very suitable for such studies. Since microscopic investigation of a relatively limited number of minute paint samples may not yield representative information about the complete artefact they were taken from, several methods for macroscopic, non-invasive imaging have recently been developed. Combined macroscopic XRF/XRD scanning is able to provide a fairly complete overview of the inorganic pigments employed to create a work of art, to answer questions about ongoing degradation phenomena and about its authenticity. As such these newly developed non-invasive and highly specific imaging methods are of interest for many cultural heritage stakeholders.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2022-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-030-86864-2 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:190777 Serial 7183
Permanent link to this record
 

 
Author De Keyser, N.; Broers, F.; Vanmeert, F.; De Meyer, S.; Gabrieli, F.; Hermens, E.; van der Snickt, G.; Janssens, K.; Keune, K.
Title Reviving degraded colors of yellow flowers in 17th century still life paintings with macro- and microscale chemical imaging Type A1 Journal article
Year 2022 Publication Science Advances Abbreviated Journal (down)
Volume 8 Issue 23 Pages 1-12
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Over time, artist pigments are prone to degradation, which can decrease the readability of the artwork or notably change the artist's intention. In this article, the visual implication of secondary degradation products in a degraded yellow rose in a still life painting by A. Mignon is discussed as a case study. A multimodal combination of chemical and optical imaging techniques, including noninvasive macroscopic x-ray powder diffraction (MA-XRPD) and macroscopic x-ray fluorescence imaging, allowed us to gain a 3D understanding of the transformation of the original intended appearance of the rose into its current degraded state. MA-XRPD enabled us to precisely correlate in situ formed products with what is optically visible on the surface and demonstrated that the precipitated lead arsenates and arsenolite from the yellow pigment orpiment and the light-induced fading of an organic yellow lake irreversibly changed the artist's intentional light-shadow modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000811556500011 Publication Date 2022-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.6
Call Number UA @ admin @ c:irua:189657 Serial 7205
Permanent link to this record
 

 
Author Derks, K.; van der Snickt, G.; Legrand, S.; van der Stighelen, K.; Janssens, K.
Title The dark halo technique in the oeuvre of Michael Sweerts and other Flemish and Dutch baroque painters. A 17th c. empirical solution to mitigate the optical 'simultaneous contrast' effect? Type A1 Journal article
Year 2022 Publication Heritage science Abbreviated Journal (down)
Volume 10 Issue 1 Pages 5
Keywords A1 Journal article; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Although the topic is rarely addressed in literature, a significant number of baroque paintings exhibit dark, halo-like shapes around the contours of the dramatis personae. Close examination of both finished and unfinished works suggests that this intriguing feature was a practical tool that helped the artist in the early painting stages. When applying the final brushwork, the halo lost its function, with some artists undertaking efforts to hide it. Although their visibility might not have been intended by the artists, today this dark paint beneath the surface is partially visible through the upper paint layers. Moreover, the disclosure of many halos using infrared photography (IRP), infrared reflectography (IRR) and macro X-ray fluorescence imaging (MA-XRF), additional to those that can be observed visually, suggests that this was a common and established element of 17th-century painting practice in Western Europe. Building on an existing hypothesis, we argue that halos can be considered as a solution to an optical problem that arose when baroque painters reversed the traditional, 15th- and 16th-century painting sequence of working from background to foreground. Instead, they started with the dominant parts of a composition, such as the face of a sitter. In that case, a temporary halo can provide the essential tonal reference to anticipate the chromatic impact of the final dark colored background on the adjacent delicate carnations. In particular, we attempt to clarify the prevalence of dark halos as a response to optical effects such as 'simultaneous contrast' and 'the crispening effect', described in literature only centuries later. As such, the recently termed 'ring condition' can be seen as the present-day equivalent of the 'halo solution' that was seemingly empirically or intuitively developed by 17th-century artists. Modern studies in visual perception proves that by laying a black ring around a target color, the optical impact of a surrounding color can be efficiently neutralized. Finally, by delving into works by Michael Sweerts, it becomes clear that resourceful artists might have adapted the halo technique and the underlying principles to their individual challenges, such as dealing with differently colored grounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000739965700001 Publication Date 2022-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.5
Call Number UA @ admin @ c:irua:185458 Serial 7217
Permanent link to this record
 

 
Author De Meyer, S.; Vanmeert, F.; Janssens, K.; Storme, P.
Title A mobile scanner for xrpd-imaging of paintings in transmission and reflection geometry Type P1 Proceeding
Year 2017 Publication ACTA ARTIS ACADEMICA 2017: PAINTING AS A STORY T2 – 6th Interdisciplinary ALMA Conference, JUN 01-03, 2017, Brno, CZECH REPUBLIC Abbreviated Journal (down)
Volume Issue Pages 29-38
Keywords P1 Proceeding; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract In this paper the possibilities and limitations of a non-invasive prototype of macroscopic X-ray powder diffraction scanning device employed in transmission and reflection mode are demonstrated. Contrarily to e.g. macroscopic X-ray fluorescence scanners, which gather information on the elemental level, the prototype instrument allows to obtain information on the crystallographic structure of the components. When applied to cultural heritage artefacts, it becomes possible to identify and localize crystalline pigments. Furthermore, it became clear that different information can be available depending on the geometry of the scanner components. In transmission mode information over the entire stratigraphy of the painting is gathered, which is useful to e.g. identify background substrates and major pigments. On the other hand, reflection-XRPD is a surface-sensitive technique and allows the identification of pigments and degradation products located on the surface. The data acquired during both experiments can be presented as two-dimensional distribution maps which show the spatial distribution of every identified pigment. The complementary nature of transmission and reflectionmode makes it possible to gain more insight into the stratigraphy of the painting which is valuable information for conservation and restoration scientists.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430517600002 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-80-87108-75-8 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:189869 Serial 7392
Permanent link to this record
 

 
Author van Loon, A.; Vandivere, A.; Delaney, J.K.; Dooley, K.A.; De Meyer, S.; Vanmeert, F.; Gonzalez, V.; Janssens, K.; Leonhardt, E.; Haswell, R.; de Groot, S.; D'Imporzano, P.; Davies, G.R.
Title Beauty is skin deep : the skin tones of Vermeer's Girl with a Pearl Earring Type A1 Journal article
Year 2019 Publication Heritage science Abbreviated Journal (down)
Volume 7 Issue 1 Pages 102
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The soft modelling of the skin tones in Vermeer's Girl with a Pearl Earring (Mauritshuis) has been remarked upon by art historians, and is their main argument to date this painting to c. 1665. This paper describes the materials and techniques Vermeer used to accomplish the smooth flesh tones and facial features of the Girl, which were investigated as part of the 2018 Girl in the Spotlight research project. It combines macroscopic X-ray fluorescence imaging (MA-XRF), reflectance imaging spectroscopy (RIS), and 3D digital microscopy. Vermeer built up the face, beginning with distinct areas of light and dark. He then smoothly blended the final layers to create almost seamless transitions. The combination of advanced imaging techniques highlighted that Vermeer built the soft contour around her face by leaving a 'gap' between the background and the skin. It also revealed details that were otherwise not visible with the naked eye, such as the eyelashes. Macroscopic imaging was complemented by the study of paint cross-sections using: light microscopy, SEM-EDX, FIB-STEM, synchrotron radiation mu-XRPD and FTIR-ATR. Vermeer intentionally used different qualities or grades of lead white in the flesh paints, showing different hydrocerussite/cerussite ratios and particle sizes. Lead isotope analysis showed that the geographic source of lead, from which the different types of lead white were manufactured, was the same: the region of Peak District of Derbyshire, UK. Finally, cross-section analysis identified the formation of new lead species in the paints: lead soaps and palmierite (K2Pb(SO4)(2)), associated with the red lake.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000516736100001 Publication Date 2019-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:167549 Serial 7552
Permanent link to this record
 

 
Author Caen, J.; Schalm, O.; Janssens, K.
Title Caractérisation historique et chimique des peintures en grisaille et du verre de vitrail dans l'oeuvre de J.-B. Capronnier (1814 – 1891) et J.-B. Bethune (1821 – 1894) Type P3 Proceeding
Year 2000 Publication Abbreviated Journal (down)
Volume Issue Pages
Keywords P3 Proceeding; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:112007 Serial 7576
Permanent link to this record
 

 
Author Klaassen, L.; van der Snickt, G.; Legrand, S.; Higgitt, C.; Spring, M.; Vanmeert, F.; Rosi, F.; Brunetti, B.G.; Postec, M.; Janssens, K.
Title Characterization and removal of a disfiguring oxalate crust on a large altarpiece by Hans Memling Type H1 Book chapter
Year 2019 Publication Abbreviated Journal (down)
Volume Issue Pages 263-282 T2 - Metal soaps in art / Casadio, F. [edi
Keywords H1 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract During the conservation treatment of Memling’s Christ with Singing and Music-making Angels, three panel paintings that are among the most monumental works in early Netherlandish art, the conservators came across insoluble surface layers containing calcium oxalates. A very thin and irregular layer of this type, hardly visible to the naked eye, was spread across the surface of all three panels. A much thicker layer forming an opaque and highly disfiguring crust that obscured the composition (Figs. 15.1 and 15.7) was locally present on areas of dark copper-containing paint, where multiple layers of old discolored coatings and accretions remained in place before the most recent cleaning. This article describes the application of a wide range of analytical techniques in order to fully understand the stratigraphy and composition of the crusts on the Memling paintings. FTIR spectroscopy in transmission and reflection mode, micro-ATR-FTIR imaging and macro-rFTIR scanning, SEM-EDX, mobile XRD, and SR-μXRD showed that the crusts contained two related Ca-based oxalate salts, whewellite and weddellite, and were separated from the original paint surface by varnish, indicating that they did not originate from degradation of the original paint but from a combination of microbial action and a thick accumulation of dirt. Supported by the results from these different analytical techniques, which when used together proved to be very effective in providing complementary information that addressed this specific conservation problem, and aided by the presence of the intermediate varnish layer(s), the conservators were able to remove most of the crusts with spectacular results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-90616-4 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190778 Serial 7609
Permanent link to this record
 

 
Author Monico, L.; Hendriks, E.; Geldof, M.; Miliani, C.; Janssens, K.; Brunetti, B.G.; Cotte, M.; Vanmeert, F.; Chieli, A.; Van der Snickt, G.; Romani, A.; Melo, M.J.
Title Chemical alteration and colour changes in the Amsterdam sunflowers Type H1 Book chapter
Year 2019 Publication Abbreviated Journal (down)
Volume Issue Pages 125-158 T2 - Van Gogh’s Sunflowers illuminated – a
Keywords H1 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract This chapter provides a description of colour changes in the Amsterdam Sunflowers due to chemical alteration of pigments, with a focus on geranium lakes and chrome yellows. The brilliant and forceful colours of these and other late nineteenth-century synthetic materials offered artists such as Vincent van Gogh new means of artistic expression that exploited a range of contrasting hues and tints. However, geranium lakes have a strong tendency to fade and chrome yellows to darken under the influence of light. Van Gogh, like other artists of his day, was aware of this drawback, yet he continued to favour the use of both pigments up until his death in July 1890 due to the unparalleled effects they gave. In April 1888, Vincent wrote to his brother Theo: Van Gogh's use of unstable colours opens a series of questions regarding the extent to which colour change affects the way his paintings look today, as discussed here in relation to the Amsterdam Sunflowers. Furthermore, given the frequency with which geranium lakes and chrome yellows occur in Van Gogh's paintings of the period 1888–90 and the predominance of chrome yellows in Sunflowers, it becomes important to understand the factors that can drive these processes of deterioration in order to develop appropriate strategies for conserving the artist's works.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-94-6372-532-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190779 Serial 7640
Permanent link to this record
 

 
Author Hendriks, E.; Geldof, M.; van den Berg, K.J.; Monico, L.; Miliani, C.; Moretti, P.; Iwanicka, M.; Targowski, P.; Megens, L.; de Groot, S.; van Keulen, H.; Janssens, K.; Vanmeert, F.; van der Snickt, G.
Title Conservation of the Amsterdam sunflowers : from past to future Type H1 Book chapter
Year 2019 Publication Abbreviated Journal (down)
Volume Issue Pages 175-205 T2 - Van Gogh’s Sunflowers illuminated – a
Keywords H1 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract This chapter lays out a conservation timeline, from past to future, for the Amsterdam version of Van Gogh's Sunflowers. It starts by considering the restoration history of the painting in order to assess its current physical state, and looks ahead to formulate an appropriate strategy for future conservation treatment and display. Due attention is paid to the two recorded episodes of restoration performed in 1927 and 1961 by the Dutch restorer, Jan Cornelis Traas. Based on physical and chemical investigation of Sunflowers we attempt to reconstruct what these former treatments (which are barely documented) entailed and consider the repercussions for the present condition of the painting. The former interventions by Traas also serve as a benchmark to reflect on current choices made, highlighting the extent to which ideas and methodologies have continued to evolve over the past century as conservation has moved further away from being a singularly craft-based activity to become an established historical and scientific discipline underpinned by ethical guidelines. Jan Cornelis Traas (1898–1984) As mentioned, the two main recorded interventions to the Amsterdam Sunflowers may be associated with the Dutch restorer, Jan Cornelis Traas, who treated the picture in 1927, close to the start of his career, and again in 1961, shortly before he retired. Traas was the first restorer to be appointed at the Mauritshuis in The Hague where he worked from 1931 to 1962 and treated hundreds of paintings, including iconic masterpieces such as Girl with a Pearl Earring by Johannes Vermeer. Yet despite the magnitude and importance of his restoration oeuvre, J.C. Traas (as he is usually referred to in surviving documents), has remained somewhat obscure. He is shown here in the only known surviving photograph of him at work, shortly before he retired (fig. 7.1). Unlike his illustrious contemporaries, A. Martin de Wild (1899–1969) and Helmut Ruhemann (1891–1973), for example, Traas did not publish anything, he appears to have kept no records of his work and no personal archive is known. However, the study of some newly discovered historical documents, combined with physical examination of Sunflowers and a large number of other works he treated, allows us to recover an idea of his working practices and approaches viewed within the context of his day.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-94-6372-532-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190780 Serial 7727
Permanent link to this record
 

 
Author Janssens, K.; Alfeld, M.; Van der Snickt, G.; De Nolf, W.; Vanmeert, F.; Monico, L.; Legrand, S.; Dik, J.; Cotte, M.; Falkenberg, G.; van der Loeff, L.; Leeuwestein, M.; Hendriks, E.
Title Examination of Vincent van Gogh's paintings and pigments by means of state-of-the-art analytical methods Type H2 Book chapter
Year 2014 Publication Abbreviated Journal (down)
Volume Issue Pages 373-403 T2 - Science and art : the painted surface
Keywords H2 Book chapter; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Recent studies in which X-ray beams of macroscopic to (sub) microscopic dimensions were used for non-destructive analysis and characterization of pigments, paint micro samples and/or entire paintings by Vincent van Gogh are concisely reviewed. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic and macroscopic XRF are variants of the method that are well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi layers, either on the length scale from 1–100 μm inside micro samples taken from paintings or on the 1–100 cm length scale when the (subsurface) distribution of specific pigments in entire paintings is concerned. In the context of the characterization of van Gogh's pigments subject to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red (μ-FTIR) spectroscopy since this method delivers complementary information at more or less the same length scale as the X-ray microprobe techniques. Also in the context of macroscopic imaging of works of art, the complementary use of X-ray based and infra-red based imaging appears very promising; some recent developments are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-84973-818-7 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:190782 Serial 7943
Permanent link to this record
 

 
Author Simonsen, K.P.; Poulsen, J.N.; Vanmeert, F.; Ryhl-Svendsen, M.; Bendix, J.; Sanyova, J.; Janssens, K.; Mederos-Henry, F.
Title Formation of zinc oxalate from zinc white in various oil binding media: the influence of atmospheric carbon dioxide by reaction with 13CO2 Type A1 Journal article
Year 2020 Publication Heritage science Abbreviated Journal (down)
Volume 8 Issue 1 Pages 126
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The formation of metal oxalates in paintings has recently gained a great deal of interest within the field of heritage science as several types of oxalate compounds have been identified in oil paintings. The present work investigates the formation of metal oxalates in linseed oil in the presence of the artists' pigments zinc white, calcite, lead white, zinc yellow, chrome yellow, cadmium yellow, cobalt violet, and verdigris. The oil paint films were artificially photo-aged by exposure to UVA light at low and high relative humidity, and afterwards analysed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The results showed that, compared to the other pigments investigated, zinc white is especially prone to metal oxalate formation and that high humidity is a crucial factor in this process. Consequently, the reactivity and photo-aging of ZnO in various oil binding media was investigated further under simulated solar radiation and at high relative humidity levels. ATR-FTIR showed that zinc oxalate is formed in all oil binding media while X-ray powder diffraction (PXRD) revealed it was mainly present in an amorphous state. To examine whether atmospheric CO2(g) has any influence on the formation of zinc oxalate, experiments with isotopically enriched (CO2(g))-C-13 were performed. Based on ATR-FTIR measurements, neither (ZnC2O4)-C-13 nor (ZnCO3)-C-13 were formed which suggests that the carbon source for the oxalate formation is most likely the paint itself (and its oil component) and not the surrounding atmosphere.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000596527000001 Publication Date 2020-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.5 Times cited Open Access
Notes Approved Most recent IF: 2.5; 2020 IF: NA
Call Number UA @ admin @ c:irua:174381 Serial 7979
Permanent link to this record
 

 
Author Martins, A.; Coddington, J.; van der Snickt, G.; van Driel, B.; McGlinchey, C.; Dahlberg, D.; Janssens, K.; Dik, J.
Title Jackson Pollock's Number 1A, 1948 : a non-invasive study using macro-x-ray fluorescence mapping (MA-XRF) and multivariate curve resolution-alternating least squares (MCR-ALS) analysis Type A1 Journal article
Year 2016 Publication Heritage science Abbreviated Journal (down)
Volume 4 Issue Pages 33
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Jackson Pollock's Number 1A, 1948 painting was investigated using in situ scanning macro-x-ray fluorescence mapping (MA-XRF) to help characterize the artist's materials and his creative process. A multivariate curve resolution-alternating least squares (MCR-ALS) approach was used to examine the hyperspectral data and obtain distribution maps and signature spectra for the paints he used. The composition of the paints was elucidated based on the chemical elements identified in the signature spectra and a tentative list of pigments, fillers and other additives is proposed for eleven different paints and for the canvas. The paint distribution maps were used to virtually reconstruct the artist process and document the sequence and manner in which Pollock applied the different paints, using deliberate and specific gestures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386395100001 Publication Date 2016-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:138172 Serial 8134
Permanent link to this record