|   | 
Details
   web
Records
Author Wang, J.; Nguyen, M.D.; Gauquelin, N.; Verbeeck, J.; Do, M.T.; Koster, G.; Rijnders, G.; Houwman, E.
Title On the importance of the work function and electron carrier density of oxide electrodes for the functional properties of ferroelectric capacitors Type A1 Journal article
Year 2020 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal (up) Phys Status Solidi-R
Volume 14 Issue 14 Pages 1900520
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It is important to understand the effect of the interfaces between the oxide electrode layers and the ferroelectric layer on the polarization response for optimizing the device performance of all-oxide ferroelectric devices. Herein, the effects of the oxide La0.07Ba0.93SnO3 (LBSO) as an electrode material in an PbZr0.52Ti0.48O3 (PZT) ferroelectric capacitor are compared with those of the more commonly used SrRuO3 (SRO) electrode. SRO (top)/PZT/SRO (bottom), SRO/PZT/LBSO, and SRO/PZT/2 nm SRO/LBSO devices are fabricated. Only marginal differences in crystalline properties, determined by X-ray diffraction and scanning transmission electron microscopy, are found. High-quality polarization loops are obtained, but with a much larger coercive field for the SRO/PZT/LBSO device. In contrast to the SRO/PZT/SRO device, the polarization decreases strongly with increasing field cycling. This fatigue problem can be remedied by inserting a 2 nm SRO layer between PZT and LBSO. It is argued that strongly increased charge injection into the PZT occurs at the bottom interface, because of the low PZT/LBSO interfacial barrier and the much lower carrier density in LBSO, as compared with that in SRO, causing a low dielectric constant, depleted layer in LBSO. The charge injection creates a trapped space charge in the PZT, causing the difference in fatigue behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000506195600001 Publication Date 2019-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 6 Open Access OpenAccess
Notes ; This work was supported by Nederlandse Organisatie voor Wetenschappelijk Onderzoek through grant no.13HTSM01. ; Approved Most recent IF: 2.8; 2020 IF: 3.032
Call Number UA @ admin @ c:irua:165681 Serial 6316
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Reith, P.; Halisdemir, U.; Jannis, D.; Spreitzer, M.; Huijben, M.; Abel, S.; Fompeyrine, J.; Verbeeck, J.; Hilgenkamp, H.; Rijnders, G.; Koster, G.
Title Thermal-strain-engineered ferromagnetism of LaMnO3/SrTiO3 heterostructures grown on silicon Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal (up) Phys. Rev. Materials
Volume 4 Issue 2 Pages 024406
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The integration of oxides on Si remains challenging, which largely hampers the practical applications of oxide-based electronic devices with superior performance. Recently, LaMnO3/SrTiO3 (LMO/STO) heterostructures have gained renewed interest for the debating origin of the ferromagnetic-insulating ground state as well as for their spin-filter applications. Here we report on the structural and magnetic properties of high-quality LMO/STO heterostructures grown on silicon. The chemical abruptness across the interface was investigated by atomic-resolution scanning transmission electron microscopy. The difference in the thermal expansion coefficients between LMO and Si imposed a large biaxial tensile strain to the LMO film, resulting in a tetragonal structure with c/a∼ 0.983. Consequently, we observed a significantly suppressed ferromagnetism along with an enhanced coercive field, as compared to the less distorted LMO film (c/a∼1.004) grown on STO single crystal. The results are discussed in terms of tensile-strain enhanced antiferromagnetic instabilities. Moreover, the ferromagnetism of LMO on Si sharply disappeared below a thickness of 5 unit cells, in agreement with the LMO/STO case, pointing to a robust critical behavior irrespective of the strain state. Our results demonstrate that the growth of oxide films on Si can be a promising way to study the tensile-strain effects in correlated oxides, and also pave the way towards the integration of multifunctional oxides on Si with atomic-layer control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000513552900003 Publication Date 2020-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 6 Open Access Not_Open_Access
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Vlaamse regering; Fonds Wetenschappelijk Onderzoek, G093417N ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; European Commission, H2020-ICT-2016-1-732642 ; Approved Most recent IF: 3.4; 2020 IF: NA
Call Number EMAT @ emat @c:irua:167782 Serial 6375
Permanent link to this record
 

 
Author Araizi-Kanoutas, G.; Geessinck, J.; Gauquelin, N.; Smit, S.; Verbeek, X.H.; Mishra, S.K.; Bencok, P.; Schlueter, C.; Lee, T.-L.; Krishnan, D.; Fatermans, J.; Verbeeck, J.; Rijnders, G.; Koster, G.; Golden, M.S.
Title Co valence transformation in isopolar LaCoO3/LaTiO3 perovskite heterostructures via interfacial engineering Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal (up) Phys. Rev. Materials
Volume 4 Issue 2 Pages 026001
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report charge transfer up to a single electron per interfacial unit cell across nonpolar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and trilayer systems grown using pulsed laser deposition, soft x-ray absorption, dichroism, and scanning transmission electron microscopy-electron energy loss spectroscopy are used to probe the cobalt-3d electron count and provide an element-specific investigation of the magnetic properties. The experiments show the cobalt valence conversion is active within 3 unit cells of the heterointerface, and able to generate full conversion to 3d7 divalent Co, which displays a paramagnetic ground state. The number of LaTiO3/LaCoO3 interfaces, the thickness of an additional, electronically insulating “break” layer between the LaTiO3 and LaCoO3, and the LaCoO3 film thickness itself in trilayers provide a trio of control knobs for average charge of the cobalt ions in LaCoO3, illustrating the efficacy of O−2p band alignment as a guiding principle for property design in complex oxide heterointerfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000513551200007 Publication Date 2020-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 13 Open Access OpenAccess
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Horizon 2020, 730872 ; Department of Science and Technology, Ministry of Science and Technology, SR/NM/Z-07/2015 ; Jawaharlal Nehru Centre for Advanced Scientific Research; Approved Most recent IF: 3.4; 2020 IF: NA
Call Number EMAT @ emat @c:irua:167787 Serial 6376
Permanent link to this record
 

 
Author Bals, S.; Van Tendeloo, G.; Rijnders, G.; Blank, D.H.A.; Leca, V.; Salluzzo, M.
Title Optimisation of superconducting thin films by TEM Type A1 Journal article
Year 2002 Publication Physica: C : superconductivity Abbreviated Journal (up) Physica C
Volume 372/376 Issue part 2 Pages 711-714
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-resolution electron microscopy is used to study the initial growth of different REBa2CU3O7-5 thin films. In DyBa2CU3O7-5 ultra-thin films, deposited on TiO2 terminated SrTiO3, two different types of interface arrangements occur: bulk-SrO-TiO2-BaO-CuO-BaO-CuO2-Dy-CuO2-BaO-bulk and bulk-SrO-TiO2-BaO-CuO2-Dy-CuO2-BaO-CuO-BaO-bulk. This variable growth sequence is the origin of the presence of antiphase boundaries. In Nd1+xBa2-xCu3O7-5 thin films, antiphase boundaries tend to annihilate by the insertion of extra Nd-layers. This annihilation is correlated with the flat morphology of the film and the absence of growth spirals at the surface of the Nd-rich films. (C) 2002 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000178018800033 Publication Date 2002-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 6 Open Access
Notes Approved Most recent IF: 1.404; 2002 IF: 0.912
Call Number UA @ lucian @ c:irua:54796 Serial 2485
Permanent link to this record
 

 
Author Koster, G.; Verbist, K.; Rijnders, G.; Rogalla, H.; Van Tendeloo, G.; Blank, D.H.A.
Title Structure and properties of (Sr,Ca)CuO2-BaCuO2 superlattices grown by pulsed laser interval deposition Type A1 Journal article
Year 2001 Publication Physica: C : superconductivity Abbreviated Journal (up) Physica C
Volume 353 Issue 3-4 Pages 167-183
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the preparation of CuBa(2)(Sr(x)Ca(1-x))(n)Cu(n-1)O(y) compounds by fabrication of (Ba,Sr,Ca)CuO(2) superlattices with pulsed laser deposition (PLD). A technique called interval deposition is used to suppress multi-level or island growth resulting in high-quality superlattice structures. Both, the applicability of PLD to atomic engineering as well as the fabrication of artificial superconductors is demonstrated. The (Sr,Ca)CuO(2)-BaCuO(2) superlattices are characterized by X-ray diffraction, high-resolution electron microscopy (HREM) and selected area electron diffraction. The superlattice period has been deduced from electron diffraction patterns and XRD measurements. For Sr containing films, the best growth behavior is observed and films with the highest degree of crystallinity are obtained, whereas superconductivity is only found in less crystalline, Ca containing films. Under some deposition conditions and depending on the amount of Ba containing layers in the superlattice, it was observed that the BaCuO(2) material is converted to Ba(2)CuO(4-delta). Image simulations to interpret the HREM contrast are performed. (C) 2001 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000168861100003 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 8 Open Access
Notes Approved Most recent IF: 1.404; 2001 IF: 0.806
Call Number UA @ lucian @ c:irua:103417 Serial 3293
Permanent link to this record
 

 
Author Bals, S.; Rijnders, G.; Blank, D.H.A.; Van Tendeloo, G.
Title TEM of ultra-thin DyBa2Cu3O7-x films deposited on TiO2 terminated SrTiO3 Type A1 Journal article
Year 2001 Publication Physica: C : superconductivity Abbreviated Journal (up) Physica C
Volume 355 Issue 3/4 Pages 225-230
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Using pulsed laser deposition ultra-thin DyBa2Cu3O7-x films were deposited on a single terminated (0 0 1) SrTiOr(3) substrate. The initial growth was studied by high-resolution electron microscopy. Two different types of interface arrangements occur and were determined as: bulk-SrO-TiO2-BaO-CuO-BaO-CuO2-Dy-CuO2-BaO bulk and bulk-SrO-TiO2-BaO-CuO2-Dy-CuO2-BaO-CuO-BaO-bulk This variable growth sequence causes structural shifts, resulting in antiphase boundaries with displacement vector R = [0 0 1/3]. as well as local chemical variations. (C) 2001 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000169479500006 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 26 Open Access
Notes Approved Most recent IF: 1.404; 2001 IF: 0.806
Call Number UA @ lucian @ c:irua:54793 Serial 3484
Permanent link to this record
 

 
Author Do, M.T.; Gauquelin, N.; Nguyen, M.D.; Wang, J.; Verbeeck, J.; Blom, F.; Koster, G.; Houwman, E.P.; Rijnders, G.
Title Interfacial dielectric layer as an origin of polarization fatigue in ferroelectric capacitors Type A1 Journal article
Year 2020 Publication Scientific Reports Abbreviated Journal (up) Sci Rep-Uk
Volume 10 Issue 1 Pages 7310
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Origins of polarization fatigue in ferroelectric capacitors under electric field cycling still remain unclear. Here, we experimentally identify origins of polarization fatigue in ferroelectric PbZr0.52Ti0.48O3 (PZT) thin-film capacitors by investigating their fatigue behaviours and interface structures. The PZT layers are epitaxially grown on SrRuO3-buffered SrTiO3 substrates by a pulsed laser deposition (PLD), and the capacitor top-electrodes are various, including SrRuO3 (SRO) made by in-situ PLD, Pt by in-situ PLD (Pt-inPLD) and ex-situ sputtering (Pt-sputtered). We found that fatigue behaviour of the capacitor is directly related to the top-electrode/PZT interface structure. The Pt-sputtered/PZT/SRO capacitor has a thin defective layer at the top interface and shows early fatigue while the Pt-inPLD/PZT/SRO and SRO/PZT/SRO capacitor have clean top-interfaces and show much more fatigue resistance. The defective dielectric layer at the Pt-sputtered/PZT interface mainly contains carbon contaminants, which form during the capacitor ex-situ fabrication. Removal of this dielectric layer significantly delays the fatigue onset. Our results clearly indicate that dielectric layer at ferroelectric capacitor interfaces is the main origin of polarization fatigue, as previously proposed in the charge injection model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000559953800003 Publication Date 2020-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited 18 Open Access OpenAccess
Notes ; The authors acknowledge the financial support of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek through Grant No. F62.3.15559. ; Approved Most recent IF: 4.6; 2020 IF: 4.259
Call Number EMAT @ emat @c:irua:169865 Serial 6374
Permanent link to this record