|   | 
Details
   web
Records
Author Alvarez-Martin, A.; Newsome, G.A.; Janssens, K.
Title High-resolution mass spectrometry and nontraditional mass defect analysis of brominated historical pigments Type A1 Journal article
Year 2021 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem
Volume 93 Issue 44 Pages 14851-14858
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract The implementation of high-resolution mass spectrometry systems offers new possibilities for the analysis of complex art samples such as historical oil paintings. However, these multicomponent systems generate large and complex data sets that require advanced visualization tools to aid interpretation, especially when no chromatographic separation is performed. In the context of this research, it was crucial to propose a data analysis tool to identify the products generated during the synthesis, drying, and aging of historical pigments. This study reports for the first time a nontraditional mass defect analysis of oil paint samples containing a fugitive brominated-organic pigment, eosin or geranium lake, by using direct infusion electrospray ionization in combination with a high-resolution Orbitrap mass spectrometer. The use of nontraditional Kendrick mass defect plots is presented in this study as a processing and visualization tool to recognize brominated species based on their specific mass defect and isotope pattern. The results demonstrate that this approach could provide valuable molecular compositional information on the degradation pathways of this pigment. We anticipate that mass defect analysis will become highly relevant in future degradation studies of many more historical organic pigments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000718171600037 Publication Date 2021-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:182347 Serial 8038
Permanent link to this record
 

 
Author Newsome, G.A.; Kavich, G.; Alvarez-Martin, A.
Title Interface for reproducible, multishot direct analysis of solid-phase microextraction samples Type A1 Journal article
Year 2020 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem
Volume 92 Issue 6 Pages 4182-4186
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract An enclosed interface that joins a direct analysis in real time (DART) probe, solid-phase microextraction (SPME) fiber, and the inlet of a high-resolution mass spectrometer is described. Unlike other systems to couple SPME sampling to ambient mass spectrometry, the interface is able to perform discrete analyses on different areas of a single SPME fiber device for up to three technical replicate measurements of one sampling event. Inlet flow speed and desorption temperature are optimized, and reproducibility is demonstrated between replicate analyses on the same derivatized SPME fiber and with sequential fiber sampling events, yielding analyte measurement center of variance (CV) from 3 to 6%. Conditioning is also performed with the enclosed DART. The interface is a straightforward addition to commercially available technologies, and machine diagrams for custom components operated with SPME/DART/MS equipment are included.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526563900004 Publication Date 2020-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access
Notes Approved Most recent IF: 7.4; 2020 IF: 6.32
Call Number UA @ admin @ c:irua:181926 Serial 8113
Permanent link to this record
 

 
Author Trashin, S.; Morales-Yánez, F.; Thiruvottriyur Shanmugam, S.; Paredis, L.; Carrión, E.N.; Sariego, I.; Muyldermans, S.; Polman, K.; Gorun, S.M.; De Wael, K.
Title Nanobody-based immunosensor detection enhanced by photocatalytic-electrochemical redox cycling Type A1 Journal article
Year 2021 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem
Volume 93 Issue 40 Pages 13606-13614
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Detection of antigenic biomarkers present in trace amounts is of crucial importance for medical diagnosis. A parasitic disease, human toxocariasis, lacks an adequate diagnostic method despite its worldwide occurrence. The currently used serology tests may stay positive even years after a possibly unnoticed infection, whereas the direct detection of a re-infection or a still active infection remains a diagnostic challenge due to the low concentration of circulating parasitic antigens. We report a time-efficient sandwich immunosensor using small recombinant single-domain antibodies (nanobodies) derived from camelid heavy-chain antibodies specific to Toxocara canis antigens. An enhanced sensitivity to pg/mL levels is achieved by using a redox cycle consisting of a photocatalytic oxidation and electrochemical reduction steps. The photocatalytic oxidation is achieved by a photosensitizer generating singlet oxygen (1O2) that, in turn, readily reacts with p-nitrophenol enzymatically produced under alkaline conditions. The photooxidation produces benzoquinone that is electrochemically reduced to hydroquinone, generating an amperometric response. The light-driven process could be easily separated from the background, thus making amperometric detection more reliable. The proposed method for detection of the toxocariasis antigen marker shows superior performances compared to other detection schemes with the same nanobodies and outperforms by at least two orders of magnitude the assays based on regular antibodies, thus suggesting new opportunities for electrochemical immunoassays of challenging low levels of antigens.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000708550500025 Publication Date 2021-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:181795 Serial 8290
Permanent link to this record
 

 
Author Liu, Y.; Cánovas, R.; Crespo, G.A.; Cuartero, M.
Title Thin-layer potentiometry for creatinine detection in undiluted human urine using ion-exchange membranes as barriers for charged interferences Type A1 Journal article
Year 2020 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem
Volume 92 Issue 4 Pages 3315-3323
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Herein, thin-layer potentiometry combined with ion-exchange membranes as barriers for charged interferences is demonstrated for the analytical detection of creatinine (CRE) in undiluted human urine. Briefly, CRE diffuses through an anion-exchange membrane (AEM) from a sample contained in one fluidic compartment to a second reservoir, containing the enzyme CRE deiminase. There, CRE reacts with the enzyme, and the formation of ammonium is dynamically monitored by potentiometric ammonium-selective electrodes. This analytical concept is integrated into a lab-on-a-chip microfluidic cell that allows for a high sample throughput and the operation under stop-flow mode, which allows CRE to passively diffuse across the AEM. Conveniently, positively charged species (i.e., potassium, sodium, and ammonium, among others) are repelled by the AEM and never reach the ammonium-selective electrodes; thus, possible interference in the response can be avoided. As a result, the dynamic potential response of the electrodes is entirely ascribed to the stoichiometric formation of ammonium. The new CRE biosensor exhibits a Nernstian slope, within a linear range of response from 1 to 50 mM CRE concentration. As expected, the response time (15–60 min) primarily depends on the CRE diffusion across the AEM. CRE analysis in urine samples displayed excellent results, without requiring sample pretreatment (before the introduction of the sample in the microfluidic chip) and with high compatibility with development into a potential point-of-care clinical tool. In an attempt to decrease the analysis time, the presented analytical methodology for CRE detection is translated into an all-solid-state platform, in which the enzyme is immobilized on the surface of the ammonium-selective electrode and with the AEM on top. While more work is necessary in this direction, the CRE sensor appears to be promising for CRE analysis in both urine and blood.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record
Impact Factor 7.4 Times cited Open Access
Notes Approved Most recent IF: 7.4; 2020 IF: 6.32
Call Number UA @ admin @ c:irua:184380 Serial 8667
Permanent link to this record
 

 
Author Baez, J.F.; Compton, M.; Chahrati, S.; Cánovas, R.; Blondeau, P.; Andrade, F.J.
Title Controlling the mixed potential of polyelectrolyte-coated platinum electrodes for the potentiometric detection of hydrogen peroxide Type A1 Journal article
Year 2020 Publication Analytica Chimica Acta Abbreviated Journal (up) Anal Chim Acta
Volume 1097 Issue Pages 204-213
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The use of a Pt electrode coated with a layer of Nafion has been described in previous works as an attractive way to perform the potentiometric detection of hydrogen peroxide. Despite of the attractive features of this approach, the nature of the non-Nernstian response of this system was not properly addressed. In this work, using a mixed potential model, the open circuit potential of the Pt electrode is shown to be under kinetic control of the oxygen reduction reaction (ORR). It is proposed that hydrogen peroxide acts as an oxygenated species that blocks free sites on the Pt surface, interfering with the ORR. Therefore, the effect of the polyelectrolyte coating can be understood in terms of the modulation of the factors that affects the kinetics of the ORR, such as an increase of the H+ concentration, minimization of the effect of the spectator species, etc. Because of the complexity and the lack of models that accurately describe systems with practical applications, this work is not intended to provide a mechanistic but rather a phenomenological view on problem. A general framework to understand the factors that affect the potentiometric response is provided. Experimental evidence showing that the use of polyelectrolyte coatings are a powerful way to control the mixed potential open new ways for the development of robust and simple potentiometric sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record
Impact Factor 6.2 Times cited Open Access
Notes Approved Most recent IF: 6.2; 2020 IF: 4.95
Call Number UA @ admin @ c:irua:184381 Serial 7731
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Trashin, S.; De Wael, K.
Title Gold-sputtered microelectrodes with built-in gold reference and counter electrodes for electrochemical DNA detection Type A1 Journal article
Year 2020 Publication Analyst Abbreviated Journal (up) Analyst
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Gold-sputtered microelectrodes with built-in gold reference and counter electrodes represent a promising platform for the development of disposable DNA sensors. Pretreating gold electrode surfaces and immobilization of DNA thereon is commonly employed in biosensing applications. However, with no scientific or practical guidelines to prepare a DNA sensor using these miniature gold-sputtered microelectrodes, cleaning and immobilization steps need to be systematically optimized and updated. In this work, we present efficient cleaning and modification of miniaturized gold-sputtered microelectrodes with thiolated DNA probes for DNA detection. Additional discussions on subtleties and nuances involved at each stage of pretreating and modifying gold-sputtered microelectrodes are included to present a robust, well-founded protocol. It was evident that the insights on cleaning polycrystalline gold disk electrodes with a benchmark electrode surface for DNA sensors, cannot be transferred to clean these miniature gold-sputtered microelectrodes. Therefore, a comparison between five different cleaning protocols was made to find the optimal one for gold-sputtered microelectrodes. Additionally, two principally different immobilization techniques for gold-sputtered microelectrode modification with thiolated ssDNA were compared i.e., immobilization through passive chemisorption and potential perturbation were compared in terms of thiol-specific attachment and thiol-unspecific adsorption through nitrogenous bases. The hybridization performance of these prepared electrodes was characterized by their sensitive complementary DNA capturing ability, detected by a standard alkaline phosphatase assay. Immobilization through passive chemisorption proved to be efficient in capturing the complementary target DNA with a detection limit of 0.14 nM and sensitivity of 9.38 A M−1 cm2. In general, this work presents a comprehensive understanding of cleaning, modification and performance of gold-sputtered microelectrodes with built-in gold reference and counter electrodes for both fundamental investigations and practical DNA sensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000592315100017 Publication Date 2020-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.2 Times cited Open Access
Notes Approved Most recent IF: 4.2; 2020 IF: 3.885
Call Number UA @ admin @ c:irua:172447 Serial 6527
Permanent link to this record
 

 
Author Daems, E.; Moro, G.; Berghmans, H.; Moretto, L.M.; Dewilde, S.; Angelini, A.; Sobott, F.; De Wael, K.
Title Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds Type A1 Journal article
Year 2021 Publication Analyst Abbreviated Journal (up) Analyst
Volume 146 Issue 6 Pages 2065-2073
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Biosensing platforms are answering the increasing demand for analytical tools for environmental monitoring of small molecules, such as per- and polyfluoroalkyl substances (PFAS). By transferring toxicological findings in bioreceptor design we can develop innovative pathways for biosensor design. Indeed, toxicological studies provide fundamental information about PFAS-biomolecule complexes that can help evaluate the applicability of the latter as bioreceptors. The toolbox of native mass spectrometry (MS) can support this evaluation, as shown by the two case studies reported in this work. The analysis of model proteins’ (i.e. albumin, haemoglobin, cytochrome c and neuroglobin) interactions with well-known PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), demonstrated the potential of this native MS screening approach. In the first case study, untreated albumin and delipidated albumin were compared in the presence and absence of PFOA confirming that the delipidation step increases albumin affinity for PFOA without affecting protein stability. In the second case study, the applicability of our methodology to identify potential bioreceptors for PFOS/PFOA was extended to other proteins. Structurally related haemoglobin and neuroglobin revealed a 1 : 1 complex, whereas no binding was observed for cytochrome c. These studies have value as a proof-of-concept for a general application of native MS to identify bioreceptors for toxic compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000631575100031 Publication Date 2021-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2654; 1364-5528 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.885 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.885
Call Number UA @ admin @ c:irua:177074 Serial 8294
Permanent link to this record
 

 
Author Beltran, V.; Marchetti, A.; Nuyts, G.; Leeuwestein, M.; Sandt, C.; Borondics, F.; De Wael, K.
Title Nanoscale analysis of historical paintings by means of O‐PTIR spectroscopy : the identification of the organic particles in L’Arlésienne (portrait of Madame Ginoux) by Van Gogh Type A1 Journal article
Year 2021 Publication Angewandte Chemie-International Edition Abbreviated Journal (up) Angew Chem Int Edit
Volume 60 Issue 42 Pages 22753-22760
Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Optical-photothermal infrared (O-PTIR) spectroscopy is a recently developed technique that provides spectra comparable to traditional transmission FTIR spectroscopy with nanometric spatial resolution. Hence, O-PTIR is a promising candidate for the analysis of historical paintings, as well as other cultural heritage objects, but its potential has not yet been evaluated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000694015700001 Publication Date 2021-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.994
Call Number UA @ admin @ c:irua:179989 Serial 8291
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Quinn, B.K.; Niklas, K.J.; Ratkowsky, D.A.; Schrader, J.; Ruan, H.; Wang, L.; Niinemets, Ü.; Niinennets, U.
Title ‘biogeom’ : an R package for simulating and fitting natural shapes Type A1 Journal article
Year 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal (up) Ann Ny Acad Sci
Volume 1516 Issue 1 Pages 123-134
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Many natural objects exhibit radial or axial symmetry in a single plane. However, a universal tool for simulating and fitting the shapes of such objects is lacking. Herein, we present an R package called 'biogeom' that simulates and fits many shapes found in nature. The package incorporates novel universal parametric equations that generate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and tree-rings, and three growth-rate equations that generate the profiles of ovate leaves and the ontogenetic growth curves of animals and plants. 'biogeom' includes several empirical datasets comprising the boundary coordinates of bird eggs, fruits, lanceolate and ovate leaves, tree rings, seeds, and sea stars. The package can also be applied to other kinds of natural shapes similar to those in the datasets. In addition, the package includes sigmoid curves derived from the three growth-rate equations, which can be used to model animal and plant growth trajectories and predict the times associated with maximum growth rate. 'biogeom' can quantify the intra- or interspecific similarity of natural outlines, and it provides quantitative information of shape and ontogenetic modification of shape with important ecological and evolutionary implications for the growth and form of the living world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000829772300001 Publication Date 2022-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923; 1749-6632 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.2
Call Number UA @ admin @ c:irua:189314 Serial 7131
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Niklas, K.J.
Title Comparison of a universal (but complex) model for avian egg shape with a simpler model Type Editorial
Year 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal (up) Ann Ny Acad Sci
Volume 1514 Issue 1 Pages 34-42
Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Recently, a universal equation by Narushin, Romanov, and Griffin (hereafter, the NRGE) was proposed to describe the shape of avian eggs. While NRGE can simulate the shape of spherical, ellipsoidal, ovoidal, and pyriform eggs, its predictions were not tested against actual data. Here, we tested the validity of the NRGE by fitting actual data of egg shapes and compared this with the predictions of our simpler model for egg shape (hereafter, the SGE). The eggs of nine bird species were sampled for this purpose. NRGE was found to fit the empirical data of egg shape well, but it did not define the egg length axis (i.e., the rotational symmetric axis), which significantly affected the prediction accuracy. The egg length axis under the NRGE is defined as the maximum distance between two points on the scanned perimeter of the egg's shape. In contrast, the SGE fitted the empirical data better, and had a smaller root-mean-square error than the NRGE for each of the nine eggs. Based on its mathematical simplicity and goodness-of-fit, the SGE appears to be a reliable and useful model for describing egg shape.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000803394100001 Publication Date 2022-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923; 1749-6632 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.2
Call Number UA @ admin @ c:irua:188470 Serial 7139
Permanent link to this record
 

 
Author Fu, Y.; Ding, L.; Singleton, M.L.; Idrissi, H.; Hermans, S.
Title Synergistic effects altering reaction pathways : the case of glucose hydrogenation over Fe-Ni catalysts Type A1 Journal article
Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal (up) Appl Catal B-Environ
Volume 288 Issue Pages 119997
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Carbon black (CB) supported Ni, Fe, or Fe-Ni alloy catalysts were synthesized by sol-gel to elucidate the reaction pathways over each catalyst, as well as synergistic effects in glucose to sorbitol hydrogenation. The bimetallic materials presented small and alloyed nanoparticles that were richer in reduced metallic sites at the surface than their monometallic counterparts. Glucose isomerization to fructose was favoured over Fe/CB, while glucose hydrogenation to sorbitol is the dominating pathway over Ni/CB catalyst. By contrast, sorbitol production was promoted and undesired isomerization was suppressed when Fe and Ni formed a nanoalloy. In addition, the alloy catalyst presented better stability than the corresponding monometallic catalyst. A comparison with a mechanical mixture of Fe/CB and Ni/CB monometallic catalysts demonstrated the synergy at the nanoscale in the alloy. By comparing different Fe:Ni ratios, the 1:1 formulation was identified as the best compromise to achieve a high activity while maintaining high sorbitol selectivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000632996500002 Publication Date 2021-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.446
Call Number UA @ admin @ c:irua:177621 Serial 6789
Permanent link to this record
 

 
Author Mahadi, A.H.; Ye, L.; Fairclough, S.M.; Qu, J.; Wu, S.; Chen, W.; Papaioannou, E.; Ray, B.; Pennycook, T.J.; Haigh, S.J.; Young, N.P.; Tedsree, K.; Metcalfe, I.S.; Tsang, S.C.E.
Title Beyond surface redox and oxygen mobility at pd-polar ceria (100) interface : underlying principle for strong metal-support interactions in green catalysis Type A1 Journal article
Year 2020 Publication Applied Catalysis B-Environmental Abbreviated Journal (up) Appl Catal B-Environ
Volume 270 Issue Pages 118843
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract When ceria is used as a support for many redox catalysis involved in green catalysis, it is well-known that the overlying noble metal can gain access to a significant quantity of oxygen atoms with high mobility and fast reduction and oxidation properties under mild conditions. However, it is as yet unclear what the underlying principle and the nature of the ceria surface involved are. By using two tailored morphologies of ceria nanocrystals, namely cubes and rods, it is demonstrated from Scanning Transmission Electron Microscopy with Electron Energy Loss Spectroscopy (STEM-EELS) mapping and Pulse Isotopic Exchange (PIE) that ceria nano-cubes terminated with a polar surface (100) can give access to more than the top most layer of surface oxygen atoms. Also, they give higher oxygen mobility than ceria nanorods with a non-polar facet of (110). A new insight for the possible additional role of polar ceria surface plays in the oxygen mobility is obtained from Density Functional Theory (DFT) calculations which suggest that the (100) surface sites that has more than half-filled O on same plane can drive oxygen atoms to oxidise adsorbate(s) on Pd due to the strong electrostatic repulsion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526110500007 Publication Date 2020-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.1 Times cited Open Access
Notes Approved Most recent IF: 22.1; 2020 IF: 9.446
Call Number UA @ admin @ c:irua:183959 Serial 6856
Permanent link to this record
 

 
Author Van Hal, M.; Campos, R.; Lenaerts, S.; De Wael, K.; Verbruggen, S.W.
Title Gas phase photofuel cell consisting of WO₃- and TiO₂-photoanodes and an air-exposed cathode for simultaneous air purification and electricity generation Type A1 Journal article
Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal (up) Appl Catal B-Environ
Volume 292 Issue Pages 120204
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Research has shown the potential of photofuel cells (PFCs) for waste water treatment, enabling the (partial) recovery of the energy released from the degraded compounds as electricity. Literature on PFCs targeting air pollution on the other hand is extremely scarce. In this work an autonomously operating air purification device targeting sustainable electricity generation is presented. Knowledge on gas phase operation of PFCs was gathered by combining photocatalytic and photoelectrochemical measurements, both for TiO2 and WO3-based photocatalysts. While TiO2-based photocatalysts performed better in direct photocatalytic experiments, they were outperformed by WO3-based photoanodes in all-gas-phase PFC operation. Not only do WO3-based photocatalysts generate the highest steady state photocurrent, they also achieved the highest fuel-to-electricity conversion (>65 %). The discrepancies between gas phase photocatalytic and photoelectrochemical processes highlight the difference in driving material properties. This study serves as a proof-of-concept towards development of an autonomous, low-cost and widely applicable waste gas-to-electricity PFC device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000663216500001 Publication Date 2021-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.446
Call Number UA @ admin @ c:irua:177075 Serial 7989
Permanent link to this record
 

 
Author Guo, J.; Clima, S.; Pourtois, G.; Van Houdt, J.
Title Identifying alternative ferroelectric materials beyond Hf(Zr)O-₂ Type A1 Journal article
Year 2020 Publication Applied Physics Letters Abbreviated Journal (up) Appl Phys Lett
Volume 117 Issue 26 Pages 262903
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A database-driven approach combined with ab initio density functional theory (DFT) simulations is used to identify and simulate alternative ferroelectric materials beyond Hf(Zr)O-2. The database-driven screening method identifies a class of wurtzite ferroelectric materials. DFT simulations of wurtzite magnesium chalcogenides, including MgS, MgSe, and MgTe, show their potential to achieve improved ferroelectric (FE) stability, simple atomistic unit cell structure, and large FE polarization. Strain engineering can effectively modulate the FE switching barrier height for facilitating FE switching. The effect of the piezoelectric property on the FE switching barrier heights is also examined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000608049700003 Publication Date 2020-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited Open Access
Notes Approved Most recent IF: 4; 2020 IF: 3.411
Call Number UA @ admin @ c:irua:176053 Serial 6766
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Faraji, M.; Yagmurcukardes, M.; Fadlallah, M.M.; Jappor, H.R.; Ghergherehchi, M.; Feghhi, S.A.H.
Title A Dirac-semimetal two-dimensional BeN4 : thickness-dependent electronic and optical properties Type A1 Journal article
Year 2021 Publication Applied Physics Letters Abbreviated Journal (up) Appl Phys Lett
Volume 118 Issue 20 Pages 203103
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by the recent experimental realization of a two-dimensional (2D) BeN4 monolayer, in this study we investigate the structural, dynamical, electronic, and optical properties of a monolayer and few-layer BeN4 using first-principles calculations. The calculated phonon band dispersion reveals the dynamical stability of a free-standing BeN4 layer, while the cohesive energy indicates the energetic feasibility of the material. Electronic band dispersions show that monolayer BeN4 is a semi-metal whose conduction and valence bands touch each other at the Sigma point. Our results reveal that increasing the layer number from single to six-layers tunes the electronic nature of BeN4. While monolayer and bilayer structures display a semi-metallic behavior, structures thicker than that of three-layers exhibit a metallic nature. Moreover, the optical parameters calculated for monolayer and bilayer structures reveal that the bilayer can absorb visible light in the ultraviolet and visible regions better than the monolayer structure. Our study investigates the electronic properties of Dirac-semimetal BeN4 that can be an important candidate for applications in nanoelectronic and optoelectronic. Published under an exclusive license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000691329900002 Publication Date 2021-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.411
Call Number UA @ admin @ c:irua:181725 Serial 6980
Permanent link to this record
 

 
Author Bafekry, A.; Sarsari, I.A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Karbasizadeh, S.; Nguyen, V.; Ghergherehchi, M.
Title Electronic and magnetic properties of two-dimensional of FeX (X = S, Se, Te) monolayers crystallize in the orthorhombic structures Type A1 Journal article
Year 2021 Publication Applied Physics Letters Abbreviated Journal (up) Appl Phys Lett
Volume 118 Issue 14 Pages 143102
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this Letter, we explore the lattice, dynamical stability, and electronic and magnetic properties of FeTe bulk and FeX (X=S, Se, Te) monolayers using the density functional calculations. The phonon dispersion relation, elastic stability criteria, and cohesive energy results show the stability of studied FeX monolayers. The mechanical properties reveal that all FeX monolayers have a brittle nature. Furthermore, these structures are stable as we move down the 6A group in the periodic table, i.e., from S, Se, and Te. The stability and work function decrease as the electronegativity decreases. The spin-polarized electronic structures demonstrate that the FeTe monolayer has a total magnetization of 3.8 mu (B), which is smaller than the magnetization of FeTe bulk (4.7 mu (B)). However, FeSe and FeS are nonmagnetic monolayers. The FeTe monolayer can be a good candidate material for spin filter applications due to its electronic and magnetic properties. This study highlights the bright prospect for the application of FeX monolayers in electronic structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000637703700001 Publication Date 2021-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.411
Call Number UA @ admin @ c:irua:177731 Serial 6985
Permanent link to this record
 

 
Author Kaushik, N.K.; Bekeschus, S.; Tanaka, H.; Lin, A.; Choi, E.H.
Title Plasma medicine technologies Type Editorial
Year 2021 Publication Applied Sciences-Basel Abbreviated Journal (up) Appl Sci-Basel
Volume 11 Issue 10 Pages 4584-4
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This Special Issue, entitled “Plasma Medicine Technologies”, covers the latest remarkable developments in the field of plasma bioscience and medicine. Plasma medicine is an interdisciplinary field that combines the principles of plasma physics, material science, bioscience, and medicine, towards the development of therapeutic strategies. A study on plasma medicine has yielded the development of new treatment opportunities in medical and dental sciences. An important aspect of this issue is the presentation of research underlying new therapeutic methods that are useful in medicine, dentistry, sterilization, and, in the current scenario, that challenge perspectives in biomedical sciences. This issue is focused on basic research on the characterization of the bioplasma sources applicable to living cells, especially to the human body, and fundamental research on the mutual interactions between bioplasma and organic–inorganic liquids, and bio or nanomaterials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000662527200001 Publication Date 2021-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.679 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.679
Call Number UA @ admin @ c:irua:178139 Serial 6771
Permanent link to this record
 

 
Author Hillen, M.; Sels, S.; Ribbens, B.; Verspeek, S.; Janssens, K.; Van der Snickt, G.; Steenackers, G.
Title Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings Type A1 Journal article
Year 2023 Publication Applied Sciences Abbreviated Journal (up) Appl Sci-Basel
Volume 13 Issue 7 Pages 1-13
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract When studying paintings with active infrared thermography (IRT), minimizing the temperature fluctuations and thermal shock during a measurement becomes important. Under these conditions, it might be beneficial to use lock-in thermography instead of the conventionally used pulse thermography (PT). This study compared the observations made with lock-in thermography (LIT) and pulse phase thermography (PPT) with halogen light excitation. Three distinctly different paintings were examined. The LIT measurements caused smaller temperature fluctuations and, overall, the phase images appeared to have a higher contrast and less noise. However, in the PPT phase images, the upper paint layer was less visible, an aspect which is of particular interest when trying to observe subsurface defects or the structure of the support. The influence of the spectral range of the cameras on the results was also investigated. All measurements were taken with a mid-wave infrared (MWIR) and long wave infrared (LWIR) camera. The results show that there is a significant number of direct reflection artifacts, caused by the use of the halogen light sources when using the MWIR camera. Adding a long-pass filter to the MWIR camera eliminated most of these artifacts. All results are presented in a side-by-side comparison.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000972133900001 Publication Date 2023-03-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7; 2023 IF: 1.679
Call Number UA @ admin @ c:irua:194898 Serial 7333
Permanent link to this record
 

 
Author Hillen, M.; Legrand, S.; Dirkx, Y.; Janssens, K.; van der Snickt, G.; Caen, J.; Steenackers, G.
Title Cluster analysis of IR thermography data for differentiating glass types in historical leaded-glass windows Type A1 Journal article
Year 2020 Publication Applied Sciences-Basel Abbreviated Journal (up) Appl Sci-Basel
Volume 10 Issue 12 Pages 4255-13
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Cultural Heritage Sciences (ARCHES); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Infrared thermography is a fast, non-destructive and contactless testing technique which is increasingly used in heritage science. The aim of this study was to assess the ability of infrared thermography, in combination with a data clustering approach, to differentiate between the different types of historical glass that were included in a colorless leaded-glass windows during previous restoration interventions. Inspection of the thermograms and the application of two data mining techniques on the thermal data, i.e., k-means clustering and hierarchical clustering, allowed identifying different groups of window panes that show a different thermal behavior. Both clustering approaches arrive at similar groupings of the glass with a clear separation of three types. However, the lead cames that hold the glass panes appear to have a substantial impact on the thermal behavior of the surrounding glass, thus preventing classification of the smallest glass panes. For the larger panes, this was not a critical issue as the center of the glass remained unaffected. Subtle visual color differences between panes, implying a variation in coloring metal ions, was not always distinguished by IRT. Nevertheless, data clustering assisted infrared thermography shows potential as an efficient and swift method for documenting the material intervention history of leaded-glass windows during or in preparation of conservation treatments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000549351800001 Publication Date 2020-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access
Notes Approved Most recent IF: 2.7; 2020 IF: 1.679
Call Number UA @ admin @ c:irua:170012 Serial 7674
Permanent link to this record
 

 
Author Volykhov, A.A.; Frolov, A.S.; Neudachina, V.S.; Vladimirova, N.V.; Gerber, E.; Callaert, C.; Hadermann, J.; Khmelevsky, N.O.; Knop-Gericke, A.; Sanchez-Barriga, J.; Yashina, L.V.
Title Impact of ordering on the reactivity of mixed crystals of topological insulators with anion substitution: Bi₂SeTe₂ and Sb₂SeTe₂ Type A1 Journal article
Year 2021 Publication Applied Surface Science Abbreviated Journal (up) Appl Surf Sci
Volume 541 Issue Pages 148490
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Three-dimensional topological insulators are exotic materials with unique properties. Tetradymite type binary chalcogenides of bismuth and antimony, as well as their mixed crystals, belong to prototypical TIs. Potential device applications of these materials require in-depth knowledge of their stability in the ambient atmosphere and other media maintained during their processing. Here we investigated the reactivity of mixed crystals with anion substitution, Bi-2(Se1-xTex)(3) and Sb2(Se1-xTex)(3), towards molecular oxygen using both in situ and ex situ X-ray photoelectron spectroscopy. The results indicate that, in contrast to cation substitution, partial substitution of tellurium by selenium atoms leads to anomalously high surface reactivity, which even exceeds that of the most reactive binary constituent. We attribute this effect to anion ordering that essentially modifies the bond geometry, especially the respective bond angles as modeled by DFT.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000608492900003 Publication Date 2020-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.387
Call Number UA @ admin @ c:irua:176067 Serial 6728
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Ziabari, A.A.; Khatibani, A.B.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D.
Title Adsorption of habitat and industry-relevant molecules on the MoSi₂N₄ monolayer Type A1 Journal article
Year 2021 Publication Applied Surface Science Abbreviated Journal (up) Appl Surf Sci
Volume 564 Issue Pages 150326
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The adsorption of various environmental gas molecules, including H-2, N-2, CO, CO2, O-2, NO, NO2, SO2 H2O, H2S, NH3 and CH4, on the surface of the recently synthesized two dimensional MoSi2N4 (MSN) monolayer has been investigated by means of spin-polarized first-principles calculations. The most stable adsorption configuration, adsorption energy, and charge transfer have been computed. Due to the weak interaction between molecules studied with the MSN monolayer surface, the adsorption energy is small and does not yield any significant distortion of the MSN lattice, i.e., the interaction between the molecules and MSN monolayer surface is physisorption. We find that all molecules are physisorbed on the MSM surface with small charge transfer, acting as either charge acceptors or donors. The MSN monolayer is a semiconductor with an indirect band gap of 1.79 eV. Our theoretical estimations reveal that upon adsorption of H-2, N-2, CO, CO2, NO, H2O, H2S, NH3 and CH4 molecules, the semiconducting character of MSN monolayer is preserved and the band gap value is decreased to similar to 1.5 eV. However, the electronic properties of the MSN monolayer can be significantly altered by adsorption of O-2, NO and SO2, and a spin polarization with magnetic moments of 2, 1, 2 mu(B), respectively, can be introduced. Furthermore, we demonstrate that the band gap and the magnetic moment of adsorbed MSN monolayer can be significantly modulated by the concentration of NO and SO2 molecules. As the concentration of NO2 molecule increases, the magnetic moment increase from 1 mu(B) to 2 and 3 mu(B). In the case of the SO2 molecule with increasing of concentration, the band gap decreases from 1.2 eV to 1.1 and 0.9 eV. Obviously, our theoretical studies indicate that MSN monolayer-based sensor has a high application potential for O-2, NO, NO2 and SO2 detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000675534500002 Publication Date 2021-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.387
Call Number UA @ admin @ c:irua:180421 Serial 6970
Permanent link to this record
 

 
Author Yayak, Y.O.; Sozen, Y.; Tan, F.; Gungen, D.; Gao, Q.; Kang, J.; Yagmurcukardes, M.; Sahin, H.
Title First-principles investigation of structural, Raman and electronic characteristics of single layer Ge3N4 Type A1 Journal article
Year 2022 Publication Applied surface science Abbreviated Journal (up) Appl Surf Sci
Volume 572 Issue Pages 151361
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By means of density functional theory-based first-principle calculations, the structural, vibrational and electronic properties of single-layer Ge3N4 are investigated. Structural optimizations and phonon band dispersions reveal that single-layer ultrathin form of Ge3N4 possesses a dynamically stable buckled structure with large hexagonal holes. Predicted Raman spectrum of single-layer Ge3N4 indicates that the buckled holey structure of the material exhibits distinctive vibrational features. Electronic band dispersion calculations indicate the indirect band gap semiconducting nature of single-layer Ge3N4. It is also proposed that single-layer Ge3N4 forms type-II vertical heterostructures with various planar and puckered 2D materials except for single-layer GeSe which gives rise to a type-I band alignment. Moreover, the electronic properties of single-layer Ge3N4 are investigated under applied external in-plane strain. It is shown that while the indirect gap behavior of Ge3N4 is unchanged by the applied strain, the energy band gap increases (decreases) with tensile (compressive) strain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000723664000006 Publication Date 2021-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.7
Call Number UA @ admin @ c:irua:184752 Serial 6993
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Khatibani, A.B.; Ziabari, A. abdolahzadeh; Ghergherehchi, M.; Nedaei, S.; Shayesteh, S.F.; Gogova, D.
Title Tunable electronic and magnetic properties of MoSi₂N₄ monolayer via vacancy defects, atomic adsorption and atomic doping Type A1 Journal article
Year 2021 Publication Applied Surface Science Abbreviated Journal (up) Appl Surf Sci
Volume 559 Issue Pages 149862
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The two dimensional MoSi2N4 (MSN) monolayer exhibiting rich physical and chemical properties was synthesized for the first time last year. We have used the spin-polarized density functional theory to study the effect of different types of point defects on the structural, electronic, and magnetic properties of the MSN monolayer. Adsorbed, substitutionally doped (at different lattice sites), and some kind of vacancies have been considered as point defects. The computational results show all defects studied decrease the MSN monolayer band gap. We found out the H-, O-, and P-doped MSN are n-type conductors. The arsenic-doped MSN, and MSN with vacancy defects have a magnetic moment. The MSN with a Si vacancy defect is a half-metallic which is favorable for spintronic applications, while the MSN with a single N vacancy or double vacancy (N + S) defects are metallic, i. e., beneficial as spin filters and chemical sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000655645300001 Publication Date 2021-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.387
Call Number UA @ admin @ c:irua:179098 Serial 7038
Permanent link to this record
 

 
Author Alloul, A.; Wille, M.; Lucenti, P.; Bossier, P.; Van Stappen, G.; Vlaeminck, S.E.
Title Purple bacteria as added-value protein ingredient in shrimp feed : Penaeus vannamei growth performance, and tolerance against Vibrio and ammonia stress Type A1 Journal article
Year 2021 Publication Aquaculture Abbreviated Journal (up) Aquaculture
Volume 530 Issue Pages 735788
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Aquafeeds contain protein ingredients such as fishmeal and soybean meal, yet their production puts pressure on the environment. Finding novel protein sources such as dried microbial biomass produced on recovered or renewable resources, so-called single-cell protein or microbial protein, can contribute to a more sustainable aquaculture industry. New microbial protein sources are emerging with photoheterotrophic grown purple non‑sulfur bacteria (PNSB) showing high potential, yet research of PNSB as added-value protein ingredient is limited. This research studied their use as a protein source for the white leg shrimp (Penaeus vannamei) and investigated the shrimp's tolerance against Vibrio and ammonia stress. A 28-day shrimp feeding trial was performed with a commercial formulation without PNSB as experimental control (diet i), two pure PNSB species, namely Rhodopseudomonas palustris (diets ii-iii), Rhodobacter capsulatus (diets iv-v) at two protein inclusion levels of 5 and 11 g PNSBprotein 100 g−1 feedprotein and a PNSB enriched culture at a protein inclusion level of 11 g PNSBprotein 100 g−1 feedprotein (diet vi). For the shrimp fed with Rb. capsulatus, 5–25% higher individual weights (p < .05) and better feed conversion ratios were observed relative to the commercial diet (1.3–1.4 vs. control 1.7 g feed g−1 biomass; p < .05). The diet containing Rps. palustris at 5 g PNSBprotein 100 g−1 feedprotein inclusion also showed higher individual weights (26%, p < .05) and a better feed conversion ratio compared to the commercial feed (1.3 vs. control 1.7 g feed g−1 biomass; p < .05). The challenge test subsequent to the feeding trial showed a higher tolerance against ammonia (3 mg N L−1) for shrimp fed with Rps. palustris (survival 63–75% vs. 8% commercial diet; p < .05). For a post-feeding challenge test with Vibrio parahaemolyticus TW01, mortality rates were equal among all treatments. Yet, in vitro tests in 96-Well plates and agar spot assays showed that the PNSB species (i) Rps. palustris, (ii) Rb. capsulatus, (iii) Rb. sphaeroides, (iv) Rhodospirillum rubrum and (v) Afifella marina suppressed the pathogens V. parahaemolyticus TW01 and V. campbellii LMG 21363. Overall, this study demonstrated the potential of PNSB as an added-value protein ingredient in shrimp nursery feed. This can contribute to a circular economy, as PNSB can be cultivated on recovered or renewable resources (e.g. wastewater).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000582169700073 Publication Date 2020-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0044-8486 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.57 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.57
Call Number UA @ admin @ c:irua:170549 Serial 8429
Permanent link to this record
 

 
Author Lauriks, T.; Longo, R.; Baetens, D.; Derudi, M.; Parente, A.; Bellemans, A.; van Beeck, J.; Denys, S.
Title Application of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban street Type A1 Journal article
Year 2021 Publication Atmospheric Environment Abbreviated Journal (up) Atmos Environ
Volume 246 Issue Pages 118127
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The correct prediction of air pollutants dispersed in urban areas is of paramount importance to safety, public health and a sustainable environment. Vehicular traffic is one of the main sources of nitrogen oxides (NO ) and particulate matter (PM), strongly related to human morbidity and mortality. In this study, the pollutant level and distribution in a section of one of the main road arteries of Antwerp (Belgium, Europe) are analyzed. The assessment is performed through computational fluid dynamics (CFD), acknowledged as a powerful tool to predict and study dispersion phenomena in complex atmospheric environments. The two main traffic lanes are modeled as emitting sources and the surrounding area is explicitly depicted. A Reynolds-averaged Navier–Stokes (RANS) approach specific for Atmospheric Boundary Layer (ABL) simulations is employed. After a validation on a wind tunnel urban canyon test case, the dispersion within the canopy of two relevant urban pollutants, nitrogen dioxide (NO) and particulate matter with an aerodynamic diameter smaller than 10 m (PM10), is studied. An experimental field campaign led to the availability of wind velocity and direction data, as well as PM10 concentrations in some key locations within the urban canyon. To accurately predict the concentration field, a relevant dispersion parameter, the turbulent Schmidt number, , is prescribed as a locally variable quantity. The pollutant distributions in the area of interest – exhibiting strong heterogeneity – are finally demonstrated, considering one of the most frequent and concerning wind directions. Possible local remedial measures are conceptualized, investigated and implemented and their outcomes are directly compared. A major goal is, by realistically reproducing the district of interest, to identify the locations inside this intricate urban canyon where the pollutants are stagnating and to analyze which solution acts as best mitigation measure. It is demonstrated that removal by electrostatic precipitation (ESP), an active measure, and by enhancing the dilution process through wind catchers, a passive measure, are effective for local pollutant removal in a realistic urban canyon. It is also demonstrated that the applied ABL methodology resolves some well known problems in ABL dispersion modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000613550100003 Publication Date 2020-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.629 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.629
Call Number UA @ admin @ c:irua:173917 Serial 7477
Permanent link to this record
 

 
Author Segura, P.C.; De Meur, Q.; Alloul, A.; Tanghe, A.; Onderwater, R.; Vlaeminck, S.E.; Vande Wouwer, A.; Wattiez, R.; Dewasme, L.; Leroy, B.
Title Preferential photoassimilation of volatile fatty acids by purple non-sulfur bacteria : experimental kinetics and dynamic modelling Type A1 Journal article
Year 2022 Publication Biochemical engineering journal Abbreviated Journal (up) Biochem Eng J
Volume 186 Issue Pages 108547-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non-sulfur bacteria (PNSB) are known for their metabolic versatility and thrive as anoxygenic photoheterotrophs. In environmental engineering and resource recovery, cells would grow on mixtures of volatile fatty acids (VFA) generated by anaerobic fermentation of waste streams. In this study, we aim to better understand the behavior of Rhodospirillum rubrum, a model PNSB species, grown using multiple VFA as carbon sources. We highlighted that assimilation of individual VFA follows a sequential pattern. Based on observations in other PNSB, this seems to be specific to isocitrate lyase-lacking organisms. We hypothesized that the inhibition phenomenon could be due to the regulation of the metabolic fluxes in the substrate cycle between acetoacetyl-CoA and crotonyl-CoA. Developed macroscopic dynamic models showed a good predictive capability for substrate competition for every VFA mixture containing acetate, propionate, and/or butyrate. These novel insights provide valuable input for better design and operation of PNSB-based waste treatment solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000891992900005 Publication Date 2022-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1369-703x; 1873-295x ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9
Call Number UA @ admin @ c:irua:192741 Serial 7332
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Liberi, S.; Covaceuszach, S.; Cassetta, A.; Angelini, A.; De Wael, K.; Moretto, L.M.
Title Covalent immobilization of delipidated human serum albumin on poly(pyrrole-2-carboxylic) acid film for the impedimetric detection of perfluorooctanoic acid Type A1 Journal article
Year 2020 Publication Bioelectrochemistry Abbreviated Journal (up) Bioelectrochemistry
Volume 134 Issue Pages 107540
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The immobilization of biomolecules at screen printed electrodes for biosensing applications is still an open challenge. To enrich the toolbox of bioelectrochemists, graphite screen printed electrodes (G-SPE) were modified with an electropolymerized film of pyrrole-2-carboxilic acid (Py-2-COOH), a pyrrole derivative rich in carboxylic acid functional groups. These functionalities are suitable for the covalent immobilization of biomolecular recognition layers. The electropolymerization was first optimized to obtain stable and conductive polymeric films, comparing two different electrolytes: sodium dodecyl sulphate (SDS) and sodium perchlorate. The G-SPE modified with Py-2-COOH in 0.1 M SDS solution showed the required properties and were further tested. A proof-of-concept study for the development of an impedimetric sensor for perfluorooctanoic acid (PFOA) was carried out using the delipidated human serum albumin (hSA) as bioreceptor. The data interpretation was supported by size exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) analysis of the bioreceptor-target complex and the preliminary results suggest the possibility to further develop this biosensing strategy for toxicological and analytical studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000579727300004 Publication Date 2020-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5 Times cited Open Access
Notes Approved Most recent IF: 5; 2020 IF: 3.346
Call Number UA @ admin @ c:irua:172494 Serial 6477
Permanent link to this record
 

 
Author Fuoco, T.; Cuartero, M.; Parrilla, M.; García-Guzmán, J.J.; Crespo, G.A.; Finne-Wistrand, A.
Title Capturing the real-time hydrolytic degradation of a library of biomedical polymers by combining traditional assessment and electrochemical sensors Type A1 Journal article
Year 2021 Publication Biomacromolecules Abbreviated Journal (up) Biomacromolecules
Volume 22 Issue 2 Pages 949-960
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We have developed an innovative methodology to overcome the lack of techniques for real-time assessment of degradable biomedical polymers at physiological conditions. The methodology was established by combining polymer characterization techniques with electrochemical sensors. The in vitro hydrolytic degradation of a series of aliphatic polyesters was evaluated by following the molar mass decrease and the mass loss at different incubation times while tracing pH and l-lactate released into the incubation media with customized miniaturized electrochemical sensors. The combination of different analytical approaches provided new insights into the mechanistic and kinetics aspects of the degradation of these biomedical materials. Although molar mass had to reach threshold values for soluble oligomers to be formed and specimens’ resorption to occur, the pH variation and l-lactate concentration were direct evidence of the resorption of the polymers and indicative of the extent of chain scission. Linear models were found for pH and released l-lactate as a function of mass loss for the l-lactide-based copolymers. The methodology should enable the sequential screening of degradable polymers at physiological conditions and has potential to be used for preclinical material’s evaluation aiming at reducing animal tests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1525-7797 ISBN Additional Links UA library record
Impact Factor 5.246 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.246
Call Number UA @ admin @ c:irua:175296 Serial 7575
Permanent link to this record
 

 
Author Martinez-Villarreal, S.; Breitenstein, A.; Nimmegeers, P.; Perez Saura, P.; Hai, B.; Asomaning, J.; Eslami, A.A.; Billen, P.; Van Passel, S.; Bressler, D.C.; Debecker, D.P.; Remacle, C.; Richel, A.
Title Drop-in biofuels production from microalgae to hydrocarbons : microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation Type A1 Journal article
Year 2022 Publication Biomass & Bioenergy Abbreviated Journal (up) Biomass Bioenerg
Volume 165 Issue Pages 106555-22
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract In the last few years, governments all around the world have agreed upon migrating towards carbon-neutral economies as a strategy for restraining the effects of climate change. A major obstacle limiting this achievement is greenhouse gases emissions, for which the aviation sector is a key contributor because of its dependence on fossil fuels. As an alternative, biofuels with similar characteristics to current fossil-fuels and fully compatible with the existing petroleum infrastructure (i.e., drop-in biofuels) are being developed. In this regard, microalgae are a promising feedstock thanks to, among other aspects, their potential for lipid accumulation. This review outlines the development status, opportunities, and challenges of different technologies that are capable of or applicable to transform microalgae into aviation fuels. To this effect, a baseline of the existing jet fuels and the requirements for potential aviation biofuels is initially presented. Then, microalgae production and valorization techniques are discussed with an emphasis on the thermochemical pathways. Finally, an assessment of the present techno-economic feasibility of microalgae-derived aviation fuels is discussed, along with the authors’ point of view on the suitability of these techniques. Further developments are needed to reduce the costs of cultivation and harvesting of microalgae, and a biorefinery approach might improve the economics of the overall process. In addition, while each of the conversion routes described has its advantages and drawbacks, they converge upon the need of optimizing the deoxygenation techniques and the proportion of the suitable type of hydrocarbons that match fuel requirements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861095400001 Publication Date 2022-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6
Call Number UA @ admin @ c:irua:189953 Serial 7354
Permanent link to this record
 

 
Author Blansaer, N.; Alloul, A.; Verstraete, W.; Vlaeminck, S.E.; Smets, B.F.
Title Aggregation of purple bacteria in an upflow photobioreactor to facilitate solid/liquid separation : impact of organic loading rate, hydraulic retention time and water composition Type A1 Journal article
Year 2022 Publication Bioresource technology Abbreviated Journal (up) Bioresource Technol
Volume 348 Issue Pages 126806-126809
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non-sulfur bacteria (PNSB) form an interesting group of microbes for resource recovery from wastewater. Solid/liquid separation is key for biomass and value-added products recovery, yet insights into PNSB aggregation are thus far limited. This study explored the effects of organic loading rate (OLR), hydraulic retention time (HRT) and water composition on the aggregation of Rhodobacter capsulatus in an anaerobic upflow photobioreactor. Between 2.0 and 14.6 gCOD/(L.d), the optimal OLR for aggregation was 6.1 gCOD/(L.d), resulting in a sedimentation flux of 5.9 kgTSS/(m2.h). With HRT tested between 0.04 and 1.00 d, disaggregation occurred at the relatively long HRT (1 d), possibly due to accumulation of thus far unidentified heat-labile metabolites. Chemical oxygen demand (COD) to nitrogen ratios (6–35 gCOD/gN) and the nitrogen source (ammonium vs. glutamate) also impacted aggregation, highlighting the importance of the type of wastewater and its pre-treatment. These novel insights to improve purple biomass separation pave the way for cost-efficient PNSB applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000800442200008 Publication Date 2022-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.4
Call Number UA @ admin @ c:irua:185843 Serial 7123
Permanent link to this record