|   | 
Details
   web
Records
Author Yampolskii, S.V.; Peeters, F.M.; Baelus, B.J.; Fink, H.J.
Title Effective radius of superconducting rings and hollow cylinders Type A1 Journal article
Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 64 Issue Pages 052504
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000170267000018 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes Approved Most recent IF: 3.836; 2001 IF: NA
Call Number UA @ lucian @ c:irua:37290 Serial 854
Permanent link to this record
 

 
Author Shakouri, K.; Szafran, B.; Esmaeilzadeh, M.; Peeters, F.M.
Title Effective spin-orbit interaction Hamiltonian for quasi-one-dimensional quantum rings Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 85 Issue 16 Pages 165314-165314,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effective Hamiltonian for an electron in a quasi-one-dimensional quantum ring in the presence of spin-orbit interactions is derived. We demonstrate that, when both coupling types are simultaneously present, the effective Hamiltonian derived by the lowest-radial-state approximation produces energy spectra and charge densities which deviate strongly from the exact ones. For equal Rashba and Dresselhaus coupling constants the lowest-radial-state approximation opens artifactal avoided crossings in the energy spectra and deforms the circular symmetry of the confined charge densities. In this case, there does not exist a ring thin enough to justify the restriction to the lowest radially quantized energy state. We derive the effective Hamiltonian accounting for both the lowest and the first excited radial states, and show that the inclusion of the latter restores the correct features of the exact solution. Relation of this result to the states of a quantum wire is also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303068800006 Publication Date 2012-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes ; This work was partially supported by Polish Ministry of Science and Higher Education and its grants for Scientific Research. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98258 Serial 855
Permanent link to this record
 

 
Author Hernández, A.D.; Baelus, B.J.; Domínguez, D.; Peeters, F.M.
Title Effects of thermal fluctuations on the magnetic behavior of mesoscopic superconductors Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 71 Issue Pages 214524,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000230276600103 Publication Date 2005-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:69410 Serial 873
Permanent link to this record
 

 
Author Cabral, L.R.E.; Peeters, F.M.
Title Elastic modes of vortex configurations in thin disks Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 70 Issue Pages 214522,1-13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000226111400123 Publication Date 2004-12-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69399 Serial 879
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M.
Title Electric-field control of the band gap and Fermi energy in graphene multilayers by top and back gates Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal (up) Phys Rev B
Volume 80 Issue 19 Pages 195401,1-195401,11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract It is known that a perpendicular electric field applied to multilayers of graphene modifies the electronic structure near the K point and may induce an energy gap in the electronic spectrum which is tunable by the gate voltage. Here we consider a system of graphene multilayers in the presence of a positively charged top and a negatively charged back gate to control independently the density of electrons on the graphene layers and the Fermi energy of the system. The band structure of three- and four-layer graphene systems in the presence of the top and back gates is obtained using a tight-binding approach. A self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We predict that for opposite and equal charges on the top and bottom layers an energy gap is opened at the Fermi level. For an even number of layers this gap is larger than in the case of an odd number of graphene layers. We find that the circular asymmetry of the spectrum, which is a consequence of the trigonal warping, changes the size of the induced electronic gap, even when the total density of the induced electrons on the graphene layers is low.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000272311000087 Publication Date 2009-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 106 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:80315 Serial 883
Permanent link to this record
 

 
Author Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.
Title Electric-field-induced shift of the Mott metal-insulator transition in thin films Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 85 Issue 8 Pages 085110-085110,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground-state properties of a paramagnetic Mott insulator at half-filling are investigated in the presence of an external electric field using the inhomogeneous Gutzwiller approximation for a single-band Hubbard model in a slab geometry. We find that the metal-insulator transition is shifted toward higher Hubbard repulsions by applying an electric field perpendicular to the slab. The main reason is the accumulation of charges near the surface. The spatial distribution of site-dependent quasiparticle weight shows that it is maximal in a few layers beneath the surface, while the central sites where the field is screened have a very low quasiparticle weight. Our results show that above a critical-field value, states near the surface will be metallic, while the bulk quasiparticle weight is extremely suppressed but never vanishing, even for large Hubbard repulsions above the bulk zero-field critical value. Below the critical-field value, our results hint toward an insulating state in which the electric field is totally screened and the slab is again at half-filling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000300240100002 Publication Date 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97208 Serial 884
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M.
Title Electric field tuning of the band gap in graphene multilayers Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal (up) Phys Rev B
Volume 79 Issue 3 Pages 035421,1-035421,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A perpendicular electric field applied to multilayers of graphene modifies the electronic structure near the K point and may induce an energy gap in the electronic spectrum. This gap is tunable by the gate voltage and its size depends on the number of layers. We use a tight-binding approach to calculate the band structure and include a self-consistent calculation in order to obtain the density of charge carriers. Results are presented for systems consisting of three and four layers of graphene. The effect of the circular asymmetry of the band structure on the gap is critically examined.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262978200119 Publication Date 2009-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 106 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:75984 Serial 887
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P.
Title Electrical and thermal-properties of a 2-dimensional electron-gas in a one-dimensional periodic potential Type A1 Journal article
Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 46 Issue 8 Pages 4667-4680
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the influence of a periodic weak modulation along the x direction on the electrical and thermal properties of a two-dimensional electron gas in the presence of a perpendicular magnetic field. The modulation lifts the degeneracy of the Landau levels and leads to one-dimensional magnetic bands whose bandwidth oscillates as a function of the magnetic field. At weak magnetic fields this gives rise to the Weiss oscillations in the magnetoresistance, discovered recently, which have a very weakly temperature-dependent amplitude and a period proportional to square-root n(e), when n(e) is the electron density. Diffusion-current contributions, proportional to the square of the bandwidth, dominate rho(xx), and collisional contributions, varying approximately as the square of the density of states, dominate rho(yy). The result is that rho(xx) and rho(yy) oscillate out of phase as observed. Asymptotic analytical expressions are presented for the conductivity tensor. Similar oscillations, of much smaller amplitude, occur in the thermodynamic quantities, such as the magnetization, the susceptibility, and the specific heat. We also predict oscillations in the Hall resistance, the cyclotron resonance position, the linewidth, as well as in the thermal conductivity and thermopower. The components of the thermal-resistance tensor have a magnetic-field dependence similar to that of the electrical-resistivity tensor.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1992JK72500032 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 148 Open Access
Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #
Call Number UA @ lucian @ c:irua:103028 Serial 889
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P.
Title Electrical and thermal properties of a two-dimensional electron gas in a one-dimensional periodic potential Type A1 Journal article
Year 1992 Publication Physical review: B Abbreviated Journal (up) Phys Rev B
Volume 46 Issue Pages 4667-4680
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992JK72500032 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 148 Open Access
Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #
Call Number UA @ lucian @ c:irua:2998 Serial 890
Permanent link to this record
 

 
Author Karavolas, V.C.; Triberis, G.P.; Peeters, F.M.
Title Electrical and thermal transport of composite fermions Type A1 Journal article
Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 56 Issue Pages 15289-15298
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000071043700067 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes Approved Most recent IF: 3.836; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19272 Serial 891
Permanent link to this record
 

 
Author Sofo, J.O.; Suarez, A.M.; Usaj, G.; Cornaglia, P.S.; Hernández-Nieves, A.D.; Balseiro, C.A.
Title Electrical control of the chemical bonding of fluorine on graphene Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 83 Issue 8 Pages 081411
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the electronic structure of diluted F atoms chemisorbed on graphene using density functional theory calculations. We show that the nature of the chemical bonding of a F atom adsorbed on top of a C atom in graphene strongly depends on carrier doping. In neutral samples the F impurities induce a sp(3)-like bonding of the C atom below, generating a local distortion of the hexagonal lattice. As the graphene is electron-doped, the C atom retracts back to the graphene plane and for high doping (10(14) cm(-2)) its electronic structure corresponds to a nearly pure sp(2) configuration. We interpret this sp(3)-sp(2) doping-induced crossover in terms of a simple tight-binding model and discuss the physical consequences of this change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287484800005 Publication Date 2011-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 65 Open Access
Notes ; J.O.S. and A. S. acknowledge support from the Donors of the American Chemical Society Petroleum Research Fund and use of facilities at the Penn State Materials Simulation Center. G. U., P. S. C., A. D. H., and C. A. B. acknowledge financial support from PICTs 06-483 and 2008-2236 from ANPCyT and PIP 11220080101821 from CONICET, Argentina. A. D. H. acknowledges support from the Flemish Science Foundation (FWO). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:105600 Serial 892
Permanent link to this record
 

 
Author Nogaret, A.; Peeters, F.M.
Title Electrically induced spin resonance fluorescence: 1: theory Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 76 Issue 7 Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We calculate the fluorescence of electron spins confined to a plane and driven into resonance by a magnetic field gradient and a constant magnetic field applied at right angles to each other. We solve the equation of motion of two-dimensional electrons in the magnetic field gradient to derive the dispersion curve of spin oscillators, the amplitude of electron oscillations, the effective magnetic field sensed by the electron spin, and the rate at which electrons are injected from an electrode into spin oscillators. We then switch on the interaction between the spin magnetic dipole and the electromagnetic field to find the fluorescence power radiated by the individual spin oscillators. The rate of radiative decay is first derived, followed by the probability of sequential photon emission whereby a series of spontaneous decays occurs at random times separated by intervals during which the spin performs Rabi oscillations. The quantum correlations between random radiative decays manifest as bursts of emission at regular intervals along the wire. We integrate all multiphoton processes to obtain an exact analytical expression for the radiated electromagnetic power. The present theory obtains all parameters of the problem including magnetodipole coupling, the particle dwell time in the magnetic field gradient, and the spin polarization of the incoming current. The output power contains a fine structure arising from the anharmonicity of electron oscillations and from nonlinear optical effects which both give satellite emission peaks at odd multiples of the fundamental frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249155300091 Publication Date 2007-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:66117 Serial 897
Permanent link to this record
 

 
Author Nogaret, A.; Lambert, N.J.; Peeters, F.M.
Title Electrically induced spin resonance fluorescence : 2 : fluorescence spectra Type A1 Journal article
Year 2007 Publication Physical Review B Abbreviated Journal (up) Phys Rev B
Volume 76 Issue 7 Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We model the fluorescence spectra of planar spin oscillators to find conditions that maximize spin resonance fluorescence. Spin oscillators perform Rabi oscillations under the effect of a periodic effective magnetic field caused by the winding motion of an electron in a gradient of magnetic field. We show that, despite the weak coupling of the spin magnetic dipole to the vacuum, spin oscillators excited by a direct current output a few nanowatts of microwave power, which is comparable to the best microwave sources. The large quantum efficiency relies on the combination of two effects. On the one hand, the spontaneous emission rate is enhanced by the synchronization of spin oscillators, which interact through the microwave field that they emit. On the other hand, the huge Rabi frequencies experienced by spin oscillators promote spins into upper levels of Zeeman transitions, from which a radiative cascade is triggered. We demonstrate different regimes of fluorescence which correspond to different values of the Rabi period relative to the spontaneous decay time and to the oscillator dwell time in the gradient of magnetic field. We investigate the device parameters which make these regimes experimentally accessible and find conditions that optimize microwave output. We find that microwave emission is centered around the cutoff frequency of spin oscillators. This has the advantage that the peak emission frequency may be tuned from zero continuously up to a few hundred gigahertz using an electrostatic gate. Quite remarkably for a spintronics effect, electrically induced spin resonance fluorescence does not require the injection of a spin polarized current. In fact, we show that microwave spectra are mostly independent of the incoming spin polarization except for magnetic waveguides which are shorter than a certain critical length, which we will specify.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249155300092 Publication Date 2007-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:66118 Serial 898
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Kemerink, M.; Koenraad, P.M.; Sauthoff, K.; Wolter, J.H.
Title Electroluminescence spectra of an STM-tip-induced quantum dot Type A1 Journal article
Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 68 Issue Pages 195307,1-12
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000187163000075 Publication Date 2003-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:44290 Serial 902
Permanent link to this record
 

 
Author Chang, K.; Li, S.S.; Xia, J.B.; Peeters, F.M.
Title Electron and hole states in diluted magnetic semiconductor quantum dots Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 69 Issue Pages 235203,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000222531400048 Publication Date 2004-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69386 Serial 907
Permanent link to this record
 

 
Author Zarenia, M.; Partoens, B.; Chakraborty, T.; Peeters, F.M.
Title Electron-electron interactions in bilayer graphene quantum dots Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 88 Issue 24 Pages 245432-245435
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A parabolic quantum dot (QD) as realized by biasing nanostructured gates on bilayer graphene is investigated in the presence of electron-electron interaction. The energy spectrum and the phase diagram reveal unexpected transitions as a function of a magnetic field. For example, in contrast to semiconductor QDs, we find a valley transition rather than only the usual singlet-triplet transition in the ground state of the interacting system. The origin of these features can be traced to the valley degree of freedom in bilayer graphene. These transitions have important consequences for cyclotron resonance experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328688600010 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), and the Methusalem foundation of the Flemish Government. T. C. is supported by the Canada Research Chairs program of the Government of Canada. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:113698 Serial 926
Permanent link to this record
 

 
Author Zhang, S.H.; Xu, W.; Peeters, F.M.; Badalyan, S.M.
Title Electron energy and temperature relaxation in graphene on a piezoelectric substrate Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 89 Issue 19 Pages 195409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the energy and temperature relaxation of electrons in graphene on a piezoelectric substrate. Scattering from the combined potential of extrinsic piezoelectric surface acoustical (PA) phonons of the substrate and intrinsic deformation acoustical phonons of graphene is considered for a (non) degenerate gas of Dirac fermions. It is shown that in the regime of low energies or temperatures the PA phonons dominate the relaxation and change qualitatively its character. This prediction is relevant for quantum metrology and electronic applications using graphene devices and suggests an experimental setup for probing electron-phonon coupling in graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336000400008 Publication Date 2014-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:117675 Serial 928
Permanent link to this record
 

 
Author Hai; Studart; Peeters, F.M.
Title Electron-mobility in 2 coupled delta-layers Type A1 Journal article
Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 52 Issue 15 Pages 11273-11276
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The low-temperature transport properties are studied for electrons confined in delta-doped semiconductor structures with two sheets in parallel. The subband quantum mobility and transport mobility are calculated numerically for the Si delta-doped GaAs systems. The effect of coupling of the two delta layers on the electron transport is investigated. Our calculations are in good agreement with experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1995TA85200092 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 25 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:95343 Serial 976
Permanent link to this record
 

 
Author Shi, J.M.; Koenraad, P.M.; van de Stadt, A.F.W.; Peeters, F.M.; Farias, G.A.; Devreese, J.T.; Wolter, J.H.; Wilamowski, Z.
Title Electron mobility in Si δ-doped GaAs with spatial correlations in the distribution of charged impurities Type A1 Journal article
Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 55 Issue Pages 13093-13099
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1997XC40400051 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes Approved Most recent IF: 3.836; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19285 Serial 977
Permanent link to this record
 

 
Author Hai, G.Q.; Studart, N.; Peeters, F.M.
Title Electron mobility in two coupled δ layers Type A1 Journal article
Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 52 Issue Pages 11273-11276
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1995TA85200092 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 24 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12193 Serial 980
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Devreese, J.T.
Title Electron optical-phonon coupling in GaAs/AlxGa1-xAs quantum wells due to interface, slab and half-space modes Type A1 Journal article
Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 48 Issue 7 Pages 4666-4674
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1993LW02600057 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 102 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:5748 Serial 981
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M.
Title Electron-phonon bound state in graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 85 Issue 20 Pages 205453-205453,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The fine structure of the Dirac energy spectrum in graphene induced by electron-optical phonon coupling is investigated in the portion of the spectrum near the phonon emission threshold. The derived new dispersion equation in the immediate neighborhood below the threshold corresponds to an electron-phonon bound state. We find that the singular vertex corrections beyond perturbation theory strongly increase the electron-phonon binding energy scale. The predicted enhancement of the effective electron-phonon coupling can be measured using angle-resolved spectroscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304649400002 Publication Date 2012-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes ; We thank E. Rashba for the useful discussion and acknowledge support from the Belgian Science Policy (IAP) and BELSPO. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98939 Serial 982
Permanent link to this record
 

 
Author Shylau, A.A.; Badalyan, S.M.; Peeters, F.M.; Jauho, A.P.
Title Electron polarization function and plasmons in metallic armchair graphene nanoribbons Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 91 Issue 91 Pages 205444
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Plasmon excitations in metallic armchair graphene nanoribbons are investigated using the random phase approximation. An exact analytical expression for the polarization function of Dirac fermions is obtained, valid for arbitrary temperature and doping. We find that at finite temperatures, due to the phase space redistribution among inter-band and intra-band electronic transitions in the conduction and valence bands, the full polarization function becomes independent of temperature and position of the chemical potential. It is shown that for a given width of nanoribbon there exists a single plasmon mode whose energy dispersion is determined by the graphene's fine structure constant. In the case of two Coulomb-coupled nanoribbons, this plasmon splits into in-phase and out-of-phase plasmon modes with splitting energy determined by the inter-ribbon spacing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355315400007 Publication Date 2015-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; The Center for Nanostructured Graphene (CNG) is sponsored by the Danish National Research Foundation (DNRF58). The work at the University of Antwerp was supported by the Flemisch Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. S.M.B. gratefully acknowledges hospitality and support from the Department of Physics at the University of Missouri. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:126403 Serial 984
Permanent link to this record
 

 
Author Reijniers, J.; Peeters, F.M.; Matulis, A.
Title Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas Type A1 Journal article
Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 64 Issue Pages 245314
Keywords A1 Journal article; Condensed Matter Theory (CMT); Engineering Management (ENM)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000173082500066 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes Approved Most recent IF: 3.836; 2001 IF: NA
Call Number UA @ lucian @ c:irua:37277 Serial 985
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M.; Bednarek, S.
Title Electron spin and charge switching in a coupled quantum-dot.quantum ring system Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 70 Issue Pages 12310,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000224209600049 Publication Date 2004-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69391 Serial 986
Permanent link to this record
 

 
Author Wu, Z.; Peeters, F.M.; Chang, K.
Title Electron tunneling through double magnetic barriers on the surface of a topological insulator Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 82 Issue 11 Pages 115211-115211,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study electron tunneling through a planar magnetic and electric barrier on the surface of a three-dimensional topological insulator. For the double barrier structures, we find (i) a directional-dependent tunneling which is sensitive to the magnetic field configuration and the electric gate voltage, (ii) a spin rotation controlled by the magnetic field and the gate voltage, (iii) many Fabry-Pérot resonances in the transmission determined by the distance between the two barriers, and (iv) the electrostatic potential can enhance the difference in the transmission between the two magnetization configurations, and consequently lead to a giant magnetoresistance. Points (i), (iii), and (iv) are alike with that in graphene stemming from the same linear-dispersion relations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282125700002 Publication Date 2010-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 65 Open Access
Notes ; This work was supported by the NSF of China, the Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85420 Serial 990
Permanent link to this record
 

 
Author Anisimovas, E.; Tavernier, M.B.; Peeters, F.M.
Title Electron-vortex separation in quantum dots Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 77 Issue 4 Pages 045327,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000252863100097 Publication Date 2008-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:67888 Serial 993
Permanent link to this record
 

 
Author Maes, J.; Hayne, M.; Sidor, Y.; Partoens, B.; Peeters, F.M.; González, Y.; González, L.; Fuster, D.; Garcia, J.M.; Moshchalkov, V.V.
Title Electron wave-function spillover in self-assembled InAs/InP quantum wires Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 70 Issue Pages 155311,1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000224855900053 Publication Date 2004-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 43 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:62435 Serial 994
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
Title Electronic and dynamical properties of Si/Ge core-shell nanowires Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 82 Issue 11 Pages 113411-113411,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Full ab initio techniques are applied to study the electronic and dynamical properties of free standing, hydrogen-passivated Si/Ge core-shell nanowires oriented along the [110] direction. All studied wires exhibit a direct band gap and are found to be structurally stable. The different contributions of the core and shell atoms to the phonon spectra are identified. The acoustic phonon velocities and the frequencies of some typical optical modes are compared with those of pure Si and Ge nanowires. These depend either on the concentration or on the type of core material. Optical modes are hardened and longitudinal acoustic velocities are softened with decreasing wire diameter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282270000001 Publication Date 2010-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and NOI-BOF (University of Antwerp). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85421 Serial 995
Permanent link to this record
 

 
Author Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M.
Title Electronic and magnetic properties of superlattices of graphene/graphane nanoribbons with different edge hydrogenation Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B
Volume 82 Issue 16 Pages 165412-165412,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Zigzag graphene nanoribbons patterned on graphane are studied using spin-polarized ab initio calculations. We found that the electronic and magnetic properties of the graphene/graphane superlattice strongly depends on the degree of hydrogenation at the interfaces between the two materials. When both zigzag interfaces are fully hydrogenated, the superlattice behaves like a freestanding zigzag graphene nanoribbon, and the magnetic ground state is antiferromagnetic. When one of the interfaces is half hydrogenated, the magnetic ground state becomes ferromagnetic, and the system is very close to being a half metal with possible spintronics applications whereas the magnetic ground state of the superlattice with both interfaces half hydrogenated is again antiferromagnetic. In this last case, both edges of the graphane nanoribbon also contribute to the total magnetization of the system. All the spin-polarized ground states are semiconducting, independent of the degree of hydrogenation of the interfaces. The ab initio results are supplemented by a simple tight-binding analysis that captures the main qualitative features. Our ab initio results show that patterned hydrogenation of graphene is a promising way to obtain stable graphene nanoribbons with interesting technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282569500011 Publication Date 2010-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (FW/08/01). A. D. H. acknowledges also support from ANPCyT (under Grant No. PICT2008-2236) ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85030 Serial 996
Permanent link to this record