|   | 
Details
   web
Records
Author Abakumov, A.M.; Tsirlin, A.A.; Bakaimi, I.; Van Tendeloo, G.; Lappas, A.
Title Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides : NaMnO2 polymorphism, redox potentials, and magnetism Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal (up) Chem Mater
Volume 26 Issue 10 Pages 3306-3315
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract New polymorphs of NaMnO2 have been observed using transmission electron microscopy and synchrotron X-ray powder diffraction. Coherent twin planes confined to the (NaMnO2) layers, parallel to the (10 (1) over bar) crystallographic planes of the monoclinic layered rock-salt-type alpha-NaMnO2 (O3) structure, form quasi-periodic modulated sequences, with the known alpha-and beta-NaMnO2 polymorphs as the two limiting cases. The energy difference between the polymorphic forms, estimated using a DFT-based structure relaxation, is on the scale of the typical thermal energies that results in a high degree of stacking disorder in these compounds. The results unveil the remarkable effect of the twin planes on both the magnetic and electrochemical properties. The polymorphism drives the magnetic ground state from a quasi-1D spin system for the geometrically frustrated alpha-polymorph through a two-leg spin ladder for the intermediate stacking sequence toward a quasi-2D magnet for the beta-polymorph. A substantial increase of the equilibrium potential for Na deintercalation upon increasing the concentration of the twin planes is calculated, providing a possibility to tune the electrochemical potential of the layered rock-salt ABO(2) cathodes by engineering the materials with a controlled concentration of twins.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336637000036 Publication Date 2014-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 35 Open Access
Notes Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:117766 Serial 2232
Permanent link to this record
 

 
Author Volkova, N.E.; Lebedev, O.I.; Gavrilova, L.Y.; Turner, S.; Gauquelin, N.; Seikh, M.M.; Caignaert, V.; Cherepanov, V.A.; Raveau, B.; Van Tendeloo, G.
Title Nanoscale ordering in oxygen deficient quintuple perovskite Sm2-\epsilonBa3+\epsilonFe5O15-\delta : implication for magnetism and oxygen stoichiometry Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal (up) Chem Mater
Volume 26 Issue 21 Pages 6303-6310
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The investigation of the system SmBaFe-O in air has allowed an oxygen deficient perovskite Sm2-epsilon Ba3+epsilon Fe5O15-delta (delta = 0.75, epsilon = 0.125) to be synthesized. In contrast to the XRPD pattern which gives a cubic symmetry (a(p) = 3.934 angstrom), the combined HREM/EELS study shows that this phase is nanoscale ordered with a quintuple tetragonal cell, a(p) X a(p) X 5(ap). The nanodomains exhibit a unique stacking sequence of the A-site cationic layers along the crystallographic c-axis, namely SmBaBa/SmBa/SmBaSm, and are chemically twinned in the three crystallographic directions. The nanoscale ordering of this perovskite explains its peculiar magnetic properties on the basis of antiferromagnetic interactions with spin blockade at the boundary between the nanodomains. The variation of electrical conductivity and oxygen content of this oxide versus temperature suggest potential SOFC applications. They may be related to the particular distribution of oxygen vacancies in the lattice and to the 3d(5)(L) under bar configuration of iron.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344905600029 Publication Date 2014-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 16 Open Access
Notes The UrFU authors were financially supported by the Ministry of Education and Science of Russian Federation (project N 4.1039.2014/K) and by UrFU under the Framework Program of development of UrFU through the «Young scientists UrFU» competition. The CRISMAT authors gratefully acknowledge the EC, the CNRS and the French Minister of Education and Research for financial support through their Research, Strategic and Scholarship programs. This work was supported by funding from the European Research Council under the Seventh Framework Program (FP7), ERC grant N°246791 – COUNTATOMS. S.T. gratefully acknowledges the fund for scientific research Flanders for a post-doctoral fellowship and for financial support under contract number G004413N. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC starting grant number 278510 – VORTEX; ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:122137 Serial 2269
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A.
Title Reply to Comment on “Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites” Type Editorial
Year 2014 Publication Chemistry of materials Abbreviated Journal (up) Chem Mater
Volume 26 Issue 2 Pages 1288
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000330543600051 Publication Date 2014-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 1 Open Access
Notes Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:115730 Serial 2874
Permanent link to this record
 

 
Author Morozov, V.A.; Arakcheeva, A.V.; Pattison, P.; Meert, K.W.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J.
Title KEu(MoO4)2 : polymorphism, structures, and luminescent properties Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal (up) Chem Mater
Volume 27 Issue 27 Pages 5519-5530
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper, with the example of two different polymorphs of KEu(MoO4)2, the influence of the ordering of the A-cations on the luminescent properties in scheelite related compounds (A′,A″)n[(B′,B″)O4]m is investigated. The polymorphs were synthesized using a solid state method. The study confirmed the existence of only two polymorphic forms at annealing temperature range 9231203 K and ambient pressure: a low temperature anorthic α-phase and a monoclinic high temperature β-phase with an incommensurately modulated structure. The structures of both polymorphs were solved using transmission electron microscopy and refined from synchrotron powder X-ray diffraction data. The monoclinic β-KEu(MoO4)2 has a (3+1)-dimensional incommensurately modulated structure (superspace group I2/b(αβ0)00, a = 5.52645(4) Å, b = 5.28277(4) Å, c = 11.73797(8) Å, γ = 91.2189(4)o, q = 0.56821(2)a*0.12388(3)b*), whereas the anorthic α-phase is (3+1)-dimensional commensurately modulated (superspace group I1̅(αβγ)0, a = 5.58727(22) Å, b = 5.29188(18)Å, c = 11.7120(4) Å, α = 90.485(3)o, β = 88.074(3)o, γ = 91.0270(23)o, q = 1/2a* + 1/2c*). In both cases the modulation arises due to Eu/K cation ordering at the A site: the formation of a 2-dimensional Eu3+ network is characteristic for the α-phase, while a 3-dimensional Eu3+-framework is observed for the β-phase structure. The luminescent properties of KEu(MoO4)2 samples prepared under different annealing conditions were measured, and the relation between their optical properties and their structures is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000360323700011 Publication Date 2015-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 26 Open Access
Notes 278510 Vortex; Fwo G039211n; G004413n ECASJO_; Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:127244 Serial 3537
Permanent link to this record
 

 
Author Morozov, V.A.; Arakcheeva, A.V.; Chapuis, G.; Guiblin, N.; Rossell, M.D.; Van Tendeloo, G.
Title KNd(MoO4)2: a new incommensurate modulated structure in the scheelite family Type A1 Journal article
Year 2006 Publication Chemistry of materials Abbreviated Journal (up) Chem Mater
Volume 18 Issue 17 Pages 4075-4082
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000239758300022 Publication Date 2006-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 46 Open Access
Notes Iap V-1 Approved Most recent IF: 9.466; 2006 IF: 5.104
Call Number UA @ lucian @ c:irua:60688 Serial 3538
Permanent link to this record
 

 
Author Pop, N.; Pralong, V.; Caignaert, V.; Colin, J.F.; Malo, S.; Van Tendeloo, G.; Raveau, B.
Title Topotactic transformation of the cationic conductor Li4Mo5O17 into a rock salt type oxide Li12Mo5O17 Type A1 Journal article
Year 2009 Publication Chemistry of materials Abbreviated Journal (up) Chem Mater
Volume 21 Issue 14 Pages 3242-3250
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Intercalation of lithium in the ribbon structure Li4Mo5O17 has been achieved, using both electrochemistry and soft chemistry. The ab initio structure determination of the ¡°Mo−O¡± framework of Li12Mo5O17 shows that the [Mo5O17]¡Þ ribbons keep the same arrangement of edge sharing MoO6 octahedra and the same orientation as in the parent structure but that a topotactic antidistortion of the ribbons appears, as a result of the larger size of Mo4+ in ¡°Li12¡± compared to Mo6+ in ¡°Li4¡±. On the basis of bond valence calculations, it is observed that 12 octahedral sites are available for Li+ in the new structure so that an ordered hypothetical rock salt type structure can be proposed for Li12Mo5O17. After the first Li insertion, a stable reversible capacity of 100 mA¡¤h/g is maintained after 20 cycles. A complete structural reversibility leading back to the ribbon type Li4Mo5O17 structure is obtained using a very low rate of C/100. The exploration of the Li mobility in those oxides shows that Li4Mo5O17 is a cationic conductor with ¦Ò = 10−3.5 S/cm at 500 ¡ãC and Ea = 0.35 eV.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000268174400032 Publication Date 2009-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 18 Open Access
Notes Approved Most recent IF: 9.466; 2009 IF: 5.368
Call Number UA @ lucian @ c:irua:78285 Serial 3682
Permanent link to this record
 

 
Author Kazakov, S.M.; Abakumov, A.M.; Perz-Mato, J.M.; Ovchinnikov, A.V.; Roslova, M.V.; Boltalin, A.I.; Morozov, I.V.; Antipov, E.V.; Van Tendeloo, G.
Title Uniform patterns of Fe-vacancy ordering in the Kx(Fe,Co)2-ySe2 superconductors Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal (up) Chem Mater
Volume 23 Issue 19 Pages 4311-4316
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Fe-vacancy ordering patterns in the superconducting KxFe2ySe2 and nonsuperconducting Kx(Fe,Co)2ySe2 samples have been investigated by electron diffraction and high angle annular dark field scanning transmission electron microscopy. The Fe-vacancy ordering occurs in the ab plane of the parent ThCr2Si2-type structure, demonstrating two types of patterns. Superstructure I retains the tetragonal symmetry and can be described with the aI = bI = as√5 (as is the unit cell parameter of the parent ThCr2Si2-type structure) supercell and I4/m space group. Superstructure II reduces the symmetry to orthorhombic with the aII = as√2, bII = 2as√2 supercell and the Ibam space group. This type of superstructure is observed for the first time in KxFe2ySe2. The Fe-vacancy ordering is inhomogeneous: the disordered areas interleave with the superstructures I and II in the same crystallite. The observed superstructures represent the compositionally dependent uniform ordering patterns of two species (the Fe atoms and vacancies) on a square lattice. More complex uniform ordered configurations, including compositional stripes, can be predicted for different chemical compositions of the KxFe2ySe2 (0 < y < 0.5) solid solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000295487800005 Publication Date 2011-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 20 Open Access
Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:92805 Serial 3810
Permanent link to this record
 

 
Author Karakulina, O.M.; Khasanova, N.R.; Drozhzhin, O.A.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M.
Title Antisite Disorder and Bond Valence Compensation in Li2FePO4F Cathode for Li-Ion Batteries Type A1 Journal article
Year 2016 Publication Chemistry Of Materials Abbreviated Journal (up) Chem Mater
Volume 28 Issue 28 Pages 7578-7581
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387518500004 Publication Date 2016-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 10 Open Access
Notes Russian Science Foundation, 16-19-00190 ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 9.466
Call Number EMAT @ emat @ c:irua:139170 c:irua:138599 Serial 4320
Permanent link to this record
 

 
Author Verchenko, V.Y.; Wei, Z.; Tsirlin, A.A.; Callaert, C.; Jesche, A.; Hadermann, J.; Dikarev, E.V.; Shevelkov, A.V.
Title Crystal growth of the Nowotny chimney ladder phase Fe2Ge3 : exploring new Fe-based narrow-gap semiconductor with promising thermoelectric performance Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal (up) Chem Mater
Volume 29 Issue 23 Pages 9954-9963
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('A new synthetic approach based on chemical transport reactions has been introduced to obtain the Nowotny chimney ladder phase Fe2Ge3 in the form of single crystals and polycrystalline powders. The single crystals possess the stoichiometric composition and the commensurate chimney ladder structure of the Ru2Sn3 type in contrast to the polycrystalline samples that are characterized by a complex microstructure. In compliance with the 18-n electron counting rule formulated for T-E intermetallics, electronic structure calculations reveal a narrow-gap semiconducting behavior of Fe2Ge3 favorable for high thermoelectric performance. Measurements of transport and thermoelectric properties performed on the polycrystalline samples confirm the formation of a narrow band gap of similar to 30 meV and reveal high absolute values of the Seebeck coefficient at elevated temperatures. Low glass-like thermal conductivity is observed in a wide temperature range that might be caused by the underlying complex microstructure.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000418206600013 Publication Date 2017-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access OpenAccess
Notes ; The authors thank Dr. Sergey Kazakov and Oleg Tyablikov for their help with the PXRD experiments. V.Y.V. appreciates the help of Dr. Sergey Dorofeev in provision and handling of the Mo(CO)<INF>6</INF> reagent. The work is supported by the Russian Science Foundation, Grant No. 17-13-01033. V.Y.V. appreciates the support from the European Regional Development Fund, Project No. TK134. A.A.T. acknowledges financial support by the Federal Ministry for Education and Research under the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. E.V.D. thanks the National Science Foundation, Grant No. CHE-1152441. C.C. acknowledges the support from the University of Antwerp through the BOF Grant No. 31445. ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:148531 Serial 4869
Permanent link to this record
 

 
Author Yang, T.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Nowik, I.; Stephens, P.W.; Hamberger, J.; Tsirlin, A.A.; Ramanujachary, K.V.; Lofland, S.; Croft, M.; Ignatov, A.; Sun, J.; Greenblatt, M.
Title _BiMnFe2O6, a polysynthetically twinned hcp MO structure Type A1 Journal article
Year 2010 Publication Chemical science Abbreviated Journal (up) Chem Sci
Volume 1 Issue 6 Pages 751-762
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The most efficient use of spatial volume and the lowest potential energies in the metal oxide structures are based on cubic close packing (ccp) or hexagonal close packing (hcp) of anions with cations occupying the interstices. A promising way to tune the composition of close packed oxides and design new compounds is related to fragmenting the parent structure into modules by periodically spaced planar interfaces, such as twin planes at the unit cell scale. The unique crystal chemistry properties of cations with a lone electron pair, such as Bi3+ or Pb2+, when located at interfaces, enables them to act as chemical scissors, to help relieve configurational strain. With this approach, we synthesized a new oxide, BiMnFe2O6, where fragments of the hypothetical hcp oxygen-based MO structure (the NiAs structure type), for the first time, serve as the building modules in a complex transition metal oxide. Mn3+ and Fe3+ ions are randomly distributed in two crystallographically independent sites (M1 and M2). The structure consists of quasi two-dimensional blocks of the 2H hexagonal close packed MO structure cut along the (114) crystal plane of the hcp lattice and stacked along the c axis. The blocks are related by a mirror operation that allows BiMnFe2O6 to be considered as a polysynthetically twinned 2H hcp MO structure. The transition to an AFM state with an incommensurate spin configuration at [similar] 212 K is established by 57Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat and low temperature powder neutron diffraction.
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000283939200013 Publication Date 2010-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 12 Open Access
Notes Approved Most recent IF: 8.668; 2010 IF: NA
Call Number UA @ lucian @ c:irua:85823 Serial 3517
Permanent link to this record
 

 
Author Lin, K.; Lebedev, O.I.; Van Tendeloo, G.; Jacobs, P.A.; Pescarmona, P.P.
Title Titanosilicate beads with hierarchical porosity : synthesis and application as epoxidation catalysts Type A1 Journal article
Year 2011 Publication Chemistry: a European journal Abbreviated Journal (up) Chem-Eur J
Volume 16 Issue 45 Pages 13509-13518
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Porous titanosilicate beads with a diameter of 0.51.5 mm (TiSil-HPB-60) were synthesized from a preformed titanosilicate solution with a porous anion-exchange resin as template. The bead format of this material enables its straightforward separation from the reaction mixture in its application as a liquid-phase heterogeneous catalyst. The material displays hierarchical porosity (micro/mesopores) and incipient TS-1 structure building units. The titanium species are predominantly located in tetrahedral framework positions. TiSil-HPB-60 is a highly active catalyst for the epoxidation of cyclohexene with t-butyl hydroperoxide (TBHP) and aqueous H2O2. With both oxidants, TiSil-HPB-60 gave higher epoxide yields than Ti-MCM-41 and TS-1. The improved catalytic performance of TiSil-HPB-60 is mainly ascribed to the large mesopores favoring the diffusion of reagents and products to and from the titanium active sites. The epoxide yield and selectivity could be further improved by silylation of the titanosilicate beads. Importantly, TiSil-HPB-60 is a stable catalyst immune to titanium leaching, and can be easily recovered and reused in successive catalytic cycles without significant loss of activity. Moreover, TiSil-HPB-60 is active and selective in the epoxidation of a wide range of bulky alkenes.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000285398400029 Publication Date 2010-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 38 Open Access
Notes Iap; Goa Approved Most recent IF: 5.317; 2011 IF: 5.925
Call Number UA @ lucian @ c:irua:88153 Serial 3668
Permanent link to this record
 

 
Author Antipov, E.V.; Khasanova, N.R.; Pshirkov, J.S.; Putilin, S.N.; Bougerol, C.; Lebedev, O.I.; Van Tendeloo, G.; Baranov, A.N.; Park, Y.W.
Title The superconducting bismuth-based mixed oxides Type A1 Journal article
Year 2002 Publication Current applied physics T2 – QTSM and QFS 02 Symposium, MAY 08-10, 2002, SEOUL, SOUTH KOREA Abbreviated Journal (up) Curr Appl Phys
Volume 2 Issue 5 Pages 425-430
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The present paper describes the synthesis, characterization of mixed-valence bismuthates with three- or two-dimensional perovskite-like structures and structural criteria that influence superconductivity in these compounds. Single-phase samples of Sr1-xKxBiO3 were prepared for the broad range of K-content: 0.25 less than or equal to x less than or equal to 0.65. For these bismuthates the symmetry of the structure changes from monoclinic to orthorhombic and finally to tetragonal upon increasing the K-content thus resulting in the decrease of the Bi-O distances and reduction of the network distortions. Superconductivity with maximum T-c = 12 K exists in the narrow range (x approximate to 0.5-0.6) within the stability field of the tetragonal phase (0.33 less than or equal to x less than or equal to 0.65), when the three-dimensional octahedral framework has close to the ideal perovskite structure arrangement. The layered type (Ba,K)(3)Bi2O7 and (Ba,K)(2)BiO4 bismuthates belonging to the A(n+1)B(n)O(3n+1) homologous series were investigated. Buckling of the (BiO2) layers in the structure of the n = 2 member occurs due to the ordering of alkaline- and alkaline-earth cations between two independent positions. The formation of the one-layer bismuthate was revealed by Electron Microscopy and XRPD studies. Both types of compounds are considered to be possible candidates for new superconducting materials among bismuthates. (C) 2002 Published by Elsevier Science B.V.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000179330900015 Publication Date 2002-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-1739; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.971 Times cited 2 Open Access
Notes Approved Most recent IF: 1.971; 2002 IF: NA
Call Number UA @ lucian @ c:irua:103336 Serial 3598
Permanent link to this record
 

 
Author Tyablikov, O.A.; Batuk, D.; Tsirlin, A.A.; Batuk, M.; Verchenko, V.Y.; Filimonov, D.S.; Pokholok, K.V.; Sheptyakov, D.V.; Rozova, M.G.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M.;
Title {110}-Layered B-cation ordering in the anion-deficient perovskite Pb2.4Ba2.6Fe2Sc2TiO13 with the crystallographic shear structure Type A1 Journal article
Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal (up) Dalton T
Volume 44 Issue 44 Pages 10753-10762
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A novel anion-deficient perovskite-based compound, Pb2.4Ba2.6Fe2Sc2TiO13, was synthesized via the citrate-based route. This compound is an n = 5 member of the A(n)B(n)O(3n-2) homologous series with unit-cell parameters related to the perovskite subcell a(p) approximate to 4.0 angstrom as a(p)root 2 x a(p) x 5a(p)root 2. The crystal structure of Pb2.4Ba2.6Fe2Sc2TiO13 consists of quasi-2D perovskite blocks with a thickness of three octahedral layers separated by the 1/2[110]((1) over bar 01)(p) crystallographic shear (CS) planes, which are parallel to the {110} plane of the perovskite subcell. The CS planes transform the corner-sharing octahedra into chains of edge-sharing distorted tetragonal pyramids. Using a combination of neutron powder diffraction, Fe-57 Mossbauer spectroscopy and atomic resolution electron energy-loss spectroscopy we demonstrate that the B-cations in Pb2.4Ba2.6Fe2Sc2TiO13 are ordered along the {110} perovskite layers with Fe3+ in distorted tetragonal pyramids along the CS planes, Ti4+ preferentially in the central octahedra of the perovskite blocks and Sc3+ in the outer octahedra of the perovskite blocks. Magnetic susceptibility and Mossbauer spectroscopy indicate a broadened magnetic transition around T-N similar to 45 K and the onset of local magnetic fields at low temperatures. The magnetic order is probably reminiscent of that in other A(n)B(n)O(3n-2) homologues, where G-type AFM order within the perovskite blocks has been observed.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000355701000026 Publication Date 2015-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited 1 Open Access
Notes Approved Most recent IF: 4.029; 2015 IF: 4.197
Call Number c:irua:127001 Serial 22
Permanent link to this record
 

 
Author Lin, F.; Meng; Kukueva, E.; Altantzis, T.; Mertens, M.; Bals, S.; Cool, P.; Van Doorslaer, S.
Title Direct-synthesis method towards copper-containing periodic mesoporous organosilicas : detailed investigation of the copper distribution in the material Type A1 Journal article
Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal (up) Dalton T
Volume 44 Issue 44 Pages 9970-9979
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Three-dimensional cubic Fm (3) over barm mesoporous copper-containing ethane-bridged PMO materials have been prepared through a direct-synthesis method at room temperature in the presence of cetyltrimethylammonium bromide as surfactant. The obtained materials have been unambiguously characterized in detail by several sophisticated techniques, including XRD, UV-Vis-Dr, TEM, elemental mapping, continuous- wave and pulsed EPR spectroscopy. The results show that at lower copper loading, the Cu2+ species are well dispersed in the Cu-PMO materials, and mainly exist as mononuclear Cu2+ species. At higher copper loading amount, Cu2+ clusters are observed in the materials, but the distribution of the Cu2+ species is still much better in the Cu-PMO materials prepared through the direct-synthesis method than in a Cu-containing PMO material prepared through an impregnation method. Moreover, the evolution of the copper incorporation during the PMO synthesis has been followed by EPR. The results show that the immobilization of the Cu2+ ion/complex and the formation of the PMO materials are taking place simultaneously. The copper ions are found to be situated on the inner surface of the mesopores of the materials and are accessible, which will be beneficial for the catalytic applications.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000355000700028 Publication Date 2015-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited 11 Open Access OpenAccess
Notes Goa-Bof; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 4.029; 2015 IF: 4.197
Call Number c:irua:126422 Serial 725
Permanent link to this record
 

 
Author Mikhailova, D.; Reichel, P.; Tsirlin, A.A.; Abakumov, A.M.; Senyshyn, A.; Mogare, K.M.; Schmidt, M.; Kuo, C.Y.; Pao, C.W.; Pi, T.W.; Lee, J.F.; Hu, Z.; Tjeng, L.H.;
Title Oxygen-driven competition between low-dimensional structures of Sr3CoMO6 and Sr3CoMO7-\delta with M = Ru,Ir Type A1 Journal article
Year 2014 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal (up) Dalton T
Volume 43 Issue 37 Pages 13883-13891
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have realized a reversible structure transformation of one-dimensional 1D K4CdCl6-type Sr3CoMO6 with the Co2+/M4+ cation ordering into the two-dimensional 2D double layered Ruddlesden-Popper structure Sr3CoMO7-delta with a random distribution of Co and M (with M = Ru, Ir) upon increasing the partial oxygen pressure. The combined soft and hard X-ray absorption spectroscopy studies show that under transformation, Co and M cations were oxidized to Co3+ and M5+. During oxidation, high-spin Co2+ in Sr3CoMO6 first transforms into high-spin Co3+ in oxygen-deficient Sr3CoMO7-delta, and then further transforms into low-spin Co3+ in fully oxidized Sr3CoMO7 upon further increasing the partial pressure of oxygen. The 1D Sr3CoMO6 compound is magnetically ordered at low temperatures with the magnetic moments lying along the c-axis. Their alignment is parallel for Sr3CoRuO6 and antiparallel for Sr3CoIrO6. The 2D compounds reveal a spin-glass-like behavior related to the random distribution of magnetic cations in the structure.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000342074100009 Publication Date 2014-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited 7 Open Access
Notes Approved Most recent IF: 4.029; 2014 IF: 4.197
Call Number UA @ lucian @ c:irua:119960 Serial 2545
Permanent link to this record
 

 
Author Rozova, M.G.; Grigoriev, V.V.; Bobrikov, I.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Antipov, E.V.; Tsirlin, A.A.; Abakumov, A.M.
Title Synthesis, structure and magnetic ordering of the mullite-type Bi2Fe4-xCrxO9 solid solutions with a frustrated pentagonal Cairo lattice Type A1 Journal article
Year 2016 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal (up) Dalton T
Volume 45 Issue 45 Pages 1192-1200
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Highly homogeneous mullite-type solid solutions Bi2Fe4-xCrxO9 (x = 0.5, 1, 1.2) were synthesized using a soft chemistry technique followed by a solid-state reaction in Ar. The crystal structure of Bi2Fe3CrO9 was investigated using X-ray and neutron powder diffraction, transmission electron microscopy and Fe-57 Mossbauer spectroscopy (S.G. Pbam, a = 7.95579(9) angstrom , b = 8.39145(9) angstrom, c = 5.98242(7) angstrom, R-F(X-ray) = 0.022, R-F(neutron) = 0.057). The ab planes in the structure are tessellated with distorted pentagonal loops built up by three tetrahedrally coordinated Fe sites and two octahedrally coordinated Fe/Cr sites, linked together in the ab plane by corner-sharing forming a pentagonal Cairo lattice. Magnetic susceptibility measurements and powder neutron diffraction show that the compounds order antiferromagnetically (AFM) with the Neel temperatures decreasing upon increasing the Cr content from T-N similar to 250 K for x = 0 to T-N similar to 155 K for x = 1.2. The magnetic structure of Bi2Fe3CrO9 at T = 30 K is characterized by a propagation vector k = (1/2,1/2,1/2). The tetrahedrally coordinated Fe cations form singlet pairs within dimers of corner-sharing tetrahedra, but spins on the neighboring dimers are nearly orthogonal. The octahedrally coordinated (Fe, Cr) cations form antiferromagnetic up-up-down-down chains along c, while the spin arrangement in the ab plane is nearly orthogonal between nearest neighbors and collinear between second neighbors. The resulting magnetic structure is remarkably different from the one in pure Bi2Fe4O9 and features several types of spin correlations even on crystallographically equivalent exchange that may be caused by the simultaneous presence of Fe and Cr on the octahedral site.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000367614700041 Publication Date 2015-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:131095 Serial 4257
Permanent link to this record
 

 
Author Hasanli, N.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Hayward, M.A.
Title Small-moment paramagnetism and extensive twinning in the topochemically reduced phase Sr2ReLiO5.5 Type A1 Journal article
Year 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal (up) Dalton T
Volume 47 Issue 44 Pages 15783-15790
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Reaction of the cation-ordered double perovskite Sr2ReLiO6 with dilute hydrogen at 475 degrees C leads to the topochemical deintercalation of oxide ions from the host lattice and the formation of a phase of composition Sr2ReLiO5.5, as confirmed by thermogravimetric and EELS data. A combination of neutron and electron diffraction data reveals the reduction process converts the -Sr2O2-ReLiO4-Sr2O2-ReLiO4- stacking sequence of the parent phase into a -Sr2O2-ReLiO3-Sr2O2-ReLiO4-, partially anion-vacant ordered sequence. Furthermore a combination of electron diffraction and imaging reveals Sr2ReLiO5.5 exhibits extensive twinning – a feature which can be attributed to the large, anisotropic volume expansion of the material on reduction. Magnetisation data reveal a strongly reduced moment of (eff) = 0.505(B) for the d(1) Re6+ centres in the phase, suggesting there remains a large orbital component to the magnetism of the rhenium centres, despite their location in low symmetry coordination environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000450208000019 Publication Date 2018-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.029 Times cited Open Access Not_Open_Access
Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC. NH acknowledges funding from the “State Programme on Education of Azerbaijani Youth Abroad in 2007-2015” by the Ministry of Education of Azerbaijan. J. V. and N. G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 4.029
Call Number EMAT @ emat @c:irua:155771 Serial 5137
Permanent link to this record
 

 
Author Nistor, L.C.; van Landuyt, J.; Ralchenko, V.G.; Obratzova, E.D.; Smolin, A.A.
Title Nanocrystalline diamond films: transmission electron microscopy and Raman spectroscopy characterization Type A1 Journal article
Year 1997 Publication Diamond and related materials Abbreviated Journal (up) Diam Relat Mater
Volume 6 Issue Pages 159-168
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1997WN37300021 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 116 Open Access
Notes Approved Most recent IF: 2.561; 1997 IF: 1.758
Call Number UA @ lucian @ c:irua:21406 Serial 2249
Permanent link to this record
 

 
Author Deshmukh, S.; Sankaran, K.J.; Srinivasu, K.; Korneychuk, S.; Banerjee, D.; Barman, A.; Bhattacharya, G.; Phase, D.M.; Gupta, M.; Verbeeck, J.; Leou, K.C.; Lin, I.N.; Haenen, K.; Roy, S.S.
Title Local probing of the enhanced field electron emission of vertically aligned nitrogen-doped diamond nanorods and their plasma illumination properties Type A1 Journal article
Year 2018 Publication Diamond and related materials Abbreviated Journal (up) Diam Relat Mater
Volume 83 Issue 83 Pages 118-125
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A detailed conductive atomic force microscopic investigation is carried out to directly image the electron emission behavior for nitrogen-doped diamond nanorods (N-DNRs). Localized emission measurements illustrate uniform distribution of high-density electron emission sites from N-DNRs. Emission sites coupled to nano graphitic phases at the grain boundaries facilitate electron transport and thereby enhance field electron emission from N-DNRs, resulting in a device operation at low turn-on fields of 6.23 V/mu m, a high current density of 1.94 mA/cm(2) (at an applied field of 11.8 V/mu m) and a large field enhancement factor of 3320 with a long lifetime stability of 980 min. Moreover, using N-DNRs as cathodes, a microplasma device that can ignite a plasma at a low threshold field of 390 V/mm achieving a high plasma illumination current density of 3.95 mA/cm2 at an applied voltage of 550 V and a plasma life-time stability for a duration of 433 min was demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000430767200017 Publication Date 2018-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 9 Open Access Not_Open_Access
Notes ; S. Deshmulch, D. Banerjee and G. Bhattacharya are indebted to Shiv Nadar University for providing Ph.D. scholarships. K.J. Sankaran and K. Haenen like to thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S. Korneychuk and J. Verbeeck acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.561
Call Number UA @ lucian @ c:irua:151609UA @ admin @ c:irua:151609 Serial 5030
Permanent link to this record
 

 
Author Deshmukh, S.; Sankaran, K.J.; Korneychuk, S.; Verbeeck, J.; Mclaughlin, J.; Haenen, K.; Roy, S.S.
Title Nanostructured nitrogen doped diamond for the detection of toxic metal ions Type A1 Journal article
Year 2018 Publication Electrochimica acta Abbreviated Journal (up) Electrochim Acta
Volume 283 Issue 283 Pages 1871-1878
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work demonstrates the applicability of one-dimensional nitrogen-doped diamond nanorods (N-DNRs) for the simultaneous electrochemical (EC) detection of Pb2+ and Cd2+ ions in an electrolyte solution. Well separated voltammetric peaks are observed for Pb2+ and Cd2+ ions using N-DNRs as a working electrode in square wave anodic stripping voltammetry measurements. Moreover, the cyclic voltammetry response of N-DNR electrodes towards the Fe(CN)(6)(/4-)/Fe(CN)(6)(/3-) redox reaction is better as compared to undoped DNR electrodes. This enhancement of EC performance in N-DNR electrodes is accounted by the increased amount of sp(2) bonded nanographitic phases, enhancing the electrical conductivity at the grain boundary (GB) regions. These findings are supported by transmission electron microscopy and electron energy loss spectroscopy studies. Consequently, the GB defect induced N-DNRs exhibit better adsorption of metal ions, which makes such samples promising candidates for next generation EC sensing devices. (C) 2018 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441077900203 Publication Date 2018-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 22 Open Access
Notes Sujit Deshmukh indebted to Shiv Nadar University for providing Ph. D. scholarship. The FEI Quanta SEM and Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S. K. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. Kamatchi Jothiramalingam Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). Prof. Ken Haenen acknowledges the Methusalem “NANO” network for financial support. Approved Most recent IF: 4.798
Call Number UA @ admin @ c:irua:153072 Serial 5366
Permanent link to this record
 

 
Author Bhat, S.G.; Gauquelin, N.; Sebastian, N.K.; Sil, A.; Béché, A.; Verbeeck, J.; Samal, D.; Kumar, P.S.A.
Title Orthorhombic vs. hexagonal epitaxial SrIrO3 thin films : structural stability and related electrical transport properties Type A1 Journal article
Year 2018 Publication Europhysics letters Abbreviated Journal (up) Epl-Europhys Lett
Volume 122 Issue 2 Pages 28003
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metastable orthorhombic SrIrO3 (SIO) is an arch-type spin-orbit coupled material. We demonstrate here a controlled growth of relatively thick (200 nm) SIO films that transform from bulk “6H-type” structure with monoclinic distortion to an orthorhombic lattice by controlling growth temperature. Extensive studies based on high-resolution X-ray diffraction and transmission electron microscopy infer a two distinct structural phases of SIO. Electrical transport reveals a weak temperature-dependent semi-metallic character for both phases. However, the temperature-dependent Hall-coefficient for the orthorhombic SIO exhibits a prominent sign change, suggesting a multiband character in the vicinity of E-F. Our findings thus unravel the subtle structure-property relation in SIO epitaxial thin films. Copyright (C) EPLA, 2018
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000435517300001 Publication Date 2018-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 4 Open Access Not_Open_Access
Notes ; SGB and DS acknowledge useful discussions with E. P. Houwman, University of Twente, on X-ray diffraction. DS would like to thank H. Takagi, Max-Planck Institute for Solid State Research, Stuttgart, for the fruitful discussion on the transport properties of SIO thin films. SGB and NKS thank A. Aravind, Bishop Moore College, Mavelikara, for his valuable inputs while depositing the thin films of SIO. SGB, NKS and PSAK acknowledge Nano Mission Council, Department of Science & Technology, India, for the funding. DS acknowledges the financial support from Max-Planck Society through MaxPlanck Partner Group. NG, AB and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G093417N. ; Approved Most recent IF: 1.957
Call Number UA @ lucian @ c:irua:152074UA @ admin @ c:irua:152074 Serial 5034
Permanent link to this record
 

 
Author Pogosov, W.V.; Lin, N.; Misko, V.R.
Title Electron-hole symmetry and solutions of Richardson pairing model Type A1 Journal article
Year 2013 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal (up) Eur Phys J B
Volume 86 Issue 5 Pages 235-236
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Richardson approach provides an exact solution of the pairing Hamiltonian. This Hamiltonian is characterized by the electron-hole pairing symmetry, which is however hidden in Richardson equations. By analyzing this symmetry and using an additional conjecture, fulfilled in solvable limits, we suggest a simple expression of the ground state energy for an equally-spaced energy-level model, which is applicable along the whole crossover from the superconducting state to the pairing fluctuation regime. Solving Richardson equations numerically, we demonstrate a good accuracy of our expression.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000320286200044 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 6 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). W.V.P. acknowledges useful discussions with Monique Combescot and the support from the Dynasty Foundation, the RFBR (project No. 12-02-00339), and RFBR-CNRS programme (project No. 12-02-91055). ; Approved Most recent IF: 1.461; 2013 IF: 1.463
Call Number UA @ lucian @ c:irua:109657 Serial 935
Permanent link to this record
 

 
Author Monico, L.; Rosi, F.; Vivani, R.; Cartechini, L.; Janssens, K.; Gauquelin, N.; Chezganov, D.; Verbeeck, J.; Cotte, M.; D'Acapito, F.; Barni, L.; Grazia, C.; Buemi, L.P.; Andral, J.-L.; Miliani, C.; Romani, A.
Title Deeper insights into the photoluminescence properties and (photo)chemical reactivity of cadmium red (CdS1-xSex) paints in renowned twentieth century paintings by state-of-the-art investigations at multiple length scales Type A1 Journal article
Year 2022 Publication The European Physical Journal Plus Abbreviated Journal (up) Eur Phys J Plus
Volume 137 Issue 3 Pages 311
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Cadmium red is the name used for denoting a class of twentieth century artists' pigments described by the general formula CdS1-xSex. For their vibrant hues and excellent covering power, a number of renowned modern and contemporary painters, including Jackson Pollock, often used cadmium reds. As direct band gap semiconductors, CdS1-xSex compounds undergo direct radiative recombination (with emissions from the green to orange region) and radiative deactivation from intragap trapping states due to crystal defects, which give rise to two peculiar red-NIR emissions, known as deep level emissions (DLEs). The positions of the DLEs mainly depend on the Se content of CdS1-xSex; thus, photoluminescence and diffuse reflectance vis-NIR spectroscopy have been profitably used for the non-invasive identification of different cadmium red varieties in artworks over the last decade. Systematic knowledge is however currently lacking on what are the parameters related to intrinsic crystal defects of CdS1-xSex and environmental factors influencing the spectral properties of DLEs as well as on the overall (photo)chemical reactivity of cadmium reds in paint matrixes. Here, we present the application of a novel multi-length scale and multi-method approach to deepen insights into the photoluminescence properties and (photo)chemical reactivity of cadmium reds in oil paintings by combining both well established and new non-invasive/non-destructive analytical techniques, including macro-scale vis-NIR and vibrational spectroscopies and micro-/nano-scale advanced electron microscopy mapping and X-ray methods employing synchrotron radiation and conventional sources. Macro-scale vis-NIR spectroscopy data obtained from the in situ non-invasive analysis of nine masterpieces by Gerardo Dottori, Jackson Pollock and Nicolas de Stael allowed classifying the CdS1-xSex-paints in three groups, according to the relative intensity of the two DLE bands. These outcomes, combined with results from micro-/nano-scale electron microscopy mapping and X-ray analysis of a set of CdS1-xSex powders and artificially aged paint mock-ups, indicated that the relative intensity of DLEs is not affected by the morphology, microstructure and local atomic environment of the pigment particles but it is influenced by the presence of moisture. Furthermore, the extensive study of artificially aged oil paint mock-ups permitted us to provide first evidence of the tendency of cadmium reds toward photo-degradation and to establish that the conversion of CdS1-xSex to CdSO4 and/or oxalates is triggered by the oil binding medium and moisture level and depends on the Se content. Based on these findings, we could interpret the localized presence of CdSO4 and cadmium oxalate as alteration products of the original cadmium red paints in two paintings by Pollock.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000765807600002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 3 Open Access OpenAccess
Notes g The research was financially supported by the EU FP7 and Horizon 2020 Projects CHARISMA (FP7-INFRASTRUCTURES, GA No. 228330), IPERION-CH (H2020-INFRAIA-2014-2015, GA No. 654028), IPERION-HS (H2020-INFRAIA-2019-1, GA No. 871034) and ESTEEM3 (Research and innovation programme, GA No. 823717) and the Italian project AMIS (Dipartimenti di Eccellenza 2018–2022, funded by MIUR and Perugia University). For the beamtime grants received, we thank ESRF-ID21 (Experiment No. HG156 and in-house beamtimes) and the CERIC-ERIC Research Infrastructure for the investigations at ESRF-BM08 (LISA) beamline (Proposal Id: 20207042). D.C. acknowledges TOP/BOF funding of the University of Antwerp.; esteem3reported; esteem3TA Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:187375 Serial 7060
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Green, R.J.; Verbeeck, J.; Rijnders, G.; Koster, G.
Title Asymmetric Interfacial Intermixing Associated Magnetic Coupling in LaMnO3/LaFeO3 Heterostructures Type A1 Journal article
Year 2021 Publication Frontiers in physics Abbreviated Journal (up) Front. Phys.
Volume 9 Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structural and magnetic properties of LaMnO<sub>3</sub>/LaFeO<sub>3</sub>(LMO/LFO) heterostructures are characterized using a combination of scanning transmission electron microscopy, electron energy-loss spectroscopy, bulk magnetometry, and resonant x-ray reflectivity. Unlike the relatively abrupt interface when LMO is deposited on top of LFO, the interface with reversed growth order shows significant cation intermixing of Mn<sup>3+</sup>and Fe<sup>3+</sup>, spreading ∼8 unit cells across the interface. The asymmetric interfacial chemical profiles result in distinct magnetic properties. The bilayer with abrupt interface shows a single magnetic hysteresis loop with strongly enhanced coercivity, as compared to the LMO plain film. However, the bilayer with intermixed interface shows a step-like hysteresis loop, associated with the separate switching of the “clean” and intermixed LMO sublayers. Our study illustrates the key role of interfacial chemical profile in determining the functional properties of oxide heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000745284500001 Publication Date 2021-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424X ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited 1 Open Access OpenAccess
Notes This work is supported by the international M-ERA.NET project SIOX (project 4288) and H2020 project ULPEC (project 732642). The X-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. NG and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. RG was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Part of the research described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), NSERC, the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:185176 Serial 6901
Permanent link to this record
 

 
Author Weiβ, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Guebitz, G.; Nyanhongo, G.
Title A biobased, bioactive, low CO₂ impact coating for soil improvers Type A1 Journal article
Year 2021 Publication Green Chemistry Abbreviated Journal (up) Green Chem
Volume 23 Issue 17 Pages 6501-6514
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 degrees C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 x 10(-3) Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg(-1) product, making it a viable alternative to fossil-based coatings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000683056500001 Publication Date 2021-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.125 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.125
Call Number UA @ admin @ c:irua:180511 Serial 7558
Permanent link to this record
 

 
Author Abakumov, A.M.; Morozov, V.A.; Tsirlin, A.A.; Verbeeck, J.; Hadermann, J.
Title Cation ordering and flexibility of the BO42- tetrahedra in incommensurately modulated CaEu2(BO4)4 (B = Mo, W) scheelites Type A1 Journal article
Year 2014 Publication Inorganic chemistry Abbreviated Journal (up) Inorg Chem
Volume 53 Issue 17 Pages 9407-9415
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The factors mediating cation ordering in the scheelite-based molybdates and tungstates are discussed on the basis of the incommensurately modulated crystal structures of the CaEu2(BO4)(4) (B = Mo, W) red phosphors solved from high-resolution synchrotron powder X-ray diffraction data. Monoclinic CaEu2(WO4)(4) adopts a (3 + 1)-dimensionally modulated structure [superspace group I2/b(alpha beta 0)00, a = 5.238 73(1)A, b = 5.266 35(1) A, c = 11.463 19(9) A, gamma = 91.1511(2)degrees, q = 0.56153(6)a* + 0.7708(9)b*, R-F = 0.050, R-p = 0.069], whereas tetragonal CaEu2(MoO4)(4) is (3 + 2)-dimensionally modulated [superspace group I4(1)/ a(alpha beta 0)00(-beta alpha 0)00, a = 5.238 672(7) A, c = 11.548 43(2) A, q(1) = 035331(8)a* + 0.82068(9)b*, q(2) = -0.82068(9)a* + 0.55331(8)b*, R-F = 0.061, R-p = 0.082]. In both cases the modulation arises from the ordering of the Ca/Eu cations and the cation vacancies at the A-sublattice of the parent scheelite ABO(4) structure. The cation ordering is incomplete and better described with harmonic rather than with steplike occupational modulation functions. The structures respond to the variation of the effective charge and cation size at the A-position through the flexible geometry of the MoO42- and WO42- tetrahedra demonstrating an alternation of stretching the B-O bond lengths and bending the O-B-O bond angles. The tendency towards A-site cation ordering in scheelites is rationalized using the difference in ionic radii and concentration of the A-site vacancies as parameters and presented in the form of a structure map.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000341229600068 Publication Date 2014-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 48 Open Access
Notes Fwo G039211n Approved Most recent IF: 4.857; 2014 IF: 4.762
Call Number UA @ lucian @ c:irua:119292UA @ admin @ c:irua:119292 Serial 297
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Tsirlin, A.A.; McCammon, C.M.; Dubrovinsky, L.; Hadermann, J.
Title Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal (up) Inorg Chem
Volume 52 Issue 17 Pages 10009-10020
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites are investigated using the (Pb1−zSrz)1−xFe1+xO3−y perovskites as a model system. The orientation of the CS planes in the system varies unevenly with z. A comparison of the structures with different CS planes revels that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000326129000037 Publication Date 2013-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 11 Open Access
Notes Fwo Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:111394 Serial 822
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Rozova, M.G.; Sarakinou, E.; Antipov, E.V.
Title Expanding the Ruddlesden-Popper manganite family : the n=3 La3.2Ba0.8Mn3O10 Member Type A1 Journal article
Year 2012 Publication Inorganic chemistry Abbreviated Journal (up) Inorg Chem
Volume 51 Issue 21 Pages 11487-11492
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract La3.2Ba0.8Mn3O10, a representative of the rare n = 3 members of the Ruddlesden-Popper manganites A(n+1)Mn(n)O(3n+1), was synthesized in an evacuated sealed silica tube. Its crystal structure was refined from a combination of powder X-ray diffraction (PXD) and precession electron diffraction (PED) data, with the rotations of the MnO6 octahedra described within the symmetry-adapted mode approach (space group Cccm, a = 29.068(1) angstrom, b = 5.5504(5) angstrom, c = 5.5412(5) angstrom; PXD RF = 0.053, RP = 0.026; PED RF = 0.248). The perovskite block in La3.2Ba0.8Mn3O10 features an octahedral tilting distortion with out-of-phase rotations of the Mn06 octahedra according to the (Phi,Phi,0)(Phi,Phi,0) mode, observed for the first time in the n = 3 Ruddlesden-Popper structures. The Mn06 octahedra demonstrate a noticeable deformation with the elongation of two apical Mn-O bonds due to the Jahn-Teller effect in the Mn3+ cations. The relationships between the octahedral tilting distortion, the ionic radii of the cations at the A- and B-positions, and the mismatch between the perovslcite and rock-salt blocks of the Ruddlesden-Popper structure are discussed. At low temperatures, La3.2Ba0.8Mn3O10 reveals a sizable remnant magnetization of about 1.3 mu(B)/Mn at 2K, and shows signatures of spin freezing below 150 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000313220200036 Publication Date 2012-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 2 Open Access
Notes Approved Most recent IF: 4.857; 2012 IF: 4.593
Call Number UA @ lucian @ c:irua:110121 Serial 1133
Permanent link to this record
 

 
Author King, G.; Abakumov, A.M.; Woodward, P.M.; Llobet, A.; Tsirlin, A.A.; Batuk, D.; Antipov, E.V.
Title The high-temperature polymorphs of K3AlF6 Type A1 Journal article
Year 2011 Publication Inorganic chemistry Abbreviated Journal (up) Inorg Chem
Volume 50 Issue 16 Pages 7792-7801
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structures of the three high-temperature polymorphs of K3AlF6 have been solved from neutron powder diffraction, synchrotron X-ray powder diffraction, and electron diffraction data. The β-phase (stable between 132 and 153 °C) and γ-phase (stable between 153 to 306 °C) can be described as unusually complex superstructures of the double-perovskite structure (K2KAlF6) which result from noncooperative tilting of the AlF6 octahedra. The β-phase is tetragonal, space group I4/m, with lattice parameters of a = 13.3862(5) Å and c = 8.5617(3) Å (at 143 °C) and Z = 10. In this phase, one-fifth of the AlF6 octahedra are rotated about the c-axis by 45° while the other four-fifths remain untilted. The large 45° rotations result in edge sharing between these AlF6 octahedra and the neighboring K-centered polyhedra, resulting in pentagonal bipyramidal coordination for four-fifths of the K+ ions that reside on the B-sites of the perovskite structure. The remaining one-fifth of the K+ ions on the B-sites retain octahedral coordination. The γ-phase is orthorhombic, space group Fddd, with lattice parameters of a = 36.1276(4) Å, b = 17.1133(2) Å, and c = 12.0562(1) Å (at 225 °C) and Z = 48. In the γ-phase, one-sixth of the AlF6 octahedra are randomly rotated about one of two directions by 45° while the other five-sixths remain essentially untilted. These rotations result in two-thirds of the K+ ions on the B-site obtaining 7-fold coordination while the other one-third remain in octahedral coordination. The δ-phase adopts the ideal cubic double-perovskite structure, space group Fmm, with a = 8.5943(1) Å at 400 °C. However, pair distribution function analysis shows that locally the δ-phase is quite different from its long-range average crystal structure. The AlF6 octahedra undergo large-amplitude rotations which are accompanied by off-center displacements of the K+ ions that occupy the 12-coordinate A-sites.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000293493100052 Publication Date 2011-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 19 Open Access
Notes Approved Most recent IF: 4.857; 2011 IF: 4.601
Call Number UA @ lucian @ c:irua:91131 Serial 1468
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Tsirlin, A.A.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.
Title Homologous series of layered perovskites An+1BnO3n-1Cl : crystal and magnetic structure of a new oxychloride Pb4BiFe4O11Cl Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal (up) Inorg Chem
Volume 52 Issue 4 Pages 2208-2218
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The nuclear and magnetic structure of a novel oxychloride Pb4BiFe4O11Cl has been studied over the temperature range 1.5700 K using a combination of transmission electron microscopy and synchrotron and neutron powder diffraction [space group P4/mbm, a = 5.5311(1) Å, c = 19.586(1) Å, T = 300 K]. Pb4BiFe4O11Cl is built of truncated (Pb,Bi)3Fe4O11 quadruple perovskite blocks separated by CsCl-type (Pb,Bi)2Cl slabs. The perovskite blocks consist of two layers of FeO6 octahedra located between two layers of FeO5 tetragonal pyramids. The FeO6 octahedra rotate about the c axis, resulting in a √2ap × √2ap × c superstructure. Below TN = 595(17) K, Pb4BiFe4O11Cl adopts a G-type antiferromagnetic structure with the iron magnetic moments confined to the ab plane. The ordered magnetic moments at 1.5 K are 3.93(3) and 3.62(4) μB on the octahedral and square-pyramidal iron sites, respectively. Pb4BiFe4O11Cl can be considered a member of the perovskite-based An+1BnO3n1Cl homologous series (A = Pb/Bi; B = Fe) with n = 4. The formation of a subsequent member of the series with n = 5 is also demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000315255200067 Publication Date 2013-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 6 Open Access
Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:106185 Serial 1486
Permanent link to this record