|   | 
Details
   web
Records
Author Croitoru, M.D.; Vagov, A.; Shanenko, A.A.; Axt, V.M.
Title The Cooper problem in nanoscale : enhancement of the coupling due to confinement Type A1 Journal article
Year 2012 Publication Superconductor science and technology Abbreviated Journal (down) Supercond Sci Tech
Volume 25 Issue 12 Pages 124001-124005
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In 1956 Cooper demonstrated (1956 Phys. Rev. 104 1189) that, no matter how weak the attraction is, two electrons in three-dimensional (3D) space just above the Fermi sea could be bound. In this work we investigate the influence of confinement on the binding energy of a Cooper pair. We show that confinement-induced modification of the Fermi sea results in a significant increase of the binding energy, when the bottom of an energy subband is very close to the Fermi surface.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000311418100004 Publication Date 2012-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 9 Open Access
Notes ; MDC acknowledges support by the European Community under the Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 2.878; 2012 IF: 2.758
Call Number UA @ lucian @ c:irua:105121 Serial 3573
Permanent link to this record
 

 
Author Shanenko, A.A.; Aguiar, J.A.; Vagov, A.; Croitoru, M.D.; Milošević, M.V.
Title Atomically flat superconducting nanofilms: multiband properties and mean-field theory Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal (down) Supercond Sci Tech
Volume 28 Issue 28 Pages 054001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Perot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353015700005 Publication Date 2015-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 23 Open Access
Notes This work was supported by the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). AAS acknowledges fruitful discussions with A Perali and D Neilson during his stay in the University of Camerino and is thankful for partial support of his visit by the University of Camerino under the project FAR 'Control and enhancement of superconductivity by engineering materials at the nanoscale'. MDC acknowledges the support from the Back to Belgium Grant of the federal Science Policy (BELSPO). Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:132501 Serial 3944
Permanent link to this record
 

 
Author Shanenko, A.A.; Tempère, J.; Brosens, F.; Devreese, J.T.
Title Mesoscopic samples: the superconducting condensate via the Gross.Pitaevskii scenario Type A1 Journal article
Year 2004 Publication Solid state communications Abbreviated Journal (down) Solid State Commun
Volume 131 Issue Pages 409-414
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000223011700012 Publication Date 2004-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 1 Open Access
Notes Approved Most recent IF: 1.554; 2004 IF: 1.523
Call Number UA @ lucian @ c:irua:48282 Serial 2000
Permanent link to this record
 

 
Author Shanenko, A.A.; Smondyrev, M.A.; Devreese, J.T.
Title Stabilisation of bipolarons by polaron environment Type A1 Journal article
Year 1996 Publication Solid state communications Abbreviated Journal (down) Solid State Commun
Volume 98 Issue Pages 1091
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1996UT02900012 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 11 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:16186 Serial 3115
Permanent link to this record
 

 
Author da Silva, R.M.; Milošević, M.V.; Shanenko, A.A.; Peeters, F.M.; Albino Aguiar, J.
Title Giant paramagnetic Meissner effect in multiband superconductors Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal (down) Sci Rep-Uk
Volume 5 Issue 5 Pages 12695
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors paramagnetic response can be observed even in slab geometries, and can be far larger than any previous estimate – even multiply larger than the diamagnetic Meissner response for the same applied magnetic field. We link the appearance of this giant paramagnetic response to the broad crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices interact non-monotonically and multibody effects become important, causing unique flux configurations and their locking in the presence of surfaces.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000359143700001 Publication Date 2015-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 25 Open Access
Notes ; This work was supported by the Brazilian science agencies CAPES (PNPD 223038.003145/2011-00), CNPq (307552/2012-8, 141911/2012-3, and APV-4 02937/ 2013-9), and FACEPE (APQ-0202-1.05/10 and BCT-0278-1.05/11), the Flemish Science Foundation (FWO-Vl), and by the CNPq-FWO cooperation programme (CNPq 490297/2009-9). R.M.S. acknowledges support from the SRS PhD+ program of the University Cooperation for Development of the Flemish Interuniversity Council (VLIR-UOS). M.V.M. acknowledges support from CNPq (APV-4 02937/2013-9), FACEPE (APV-0034-1.05/14), and CAPES (BEX1392/11-5). ; Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number c:irua:127212 Serial 1339
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Phonon limited superconducting correlations in metallic nanograins Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal (down) Sci Rep-Uk
Volume 5 Issue 5 Pages 16515
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electronphonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest T-c achievable by quantum confinement.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000364647700001 Publication Date 2015-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 9 Open Access
Notes ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Research Foundation Flanders (FWO), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO. M.D.C. acknowledges fruitful discussions with V. Z. Kresin, S. N. Klimin and V. N. Gladilin. ; Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number UA @ lucian @ c:irua:129543 Serial 4224
Permanent link to this record
 

 
Author Croitoru, M.D.; Zachmann, M.; Vagov, A.; Axt, V.M.; Shanenko, A.A.; Kettmann, P.; Papenkort, T.; Kuhn, T.
Title Coherent dynamics of confinement-induced multiband superconductors Type A1 Journal article
Year 2014 Publication Physica: C : superconductivity Abbreviated Journal (down) Physica C
Volume 503 Issue Pages 183-186
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the coherent dynamics of pairing in a nanoscale superconductor, that is intrinsically multiband, after an external perturbation in the non-adiabatic regime. The description of the dynamics of the pairing order is within the density-matrix approach based on the BCS model and the Bogoliubov-de Gennes equations. We find that for certain resonant wire widths the superconducting order parameter exhibits two oscillatory frequencies which are determined by the long-time asymptotic values of the subgaps. This in turn leads to a pronounced beating phenomenon. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000340070600040 Publication Date 2014-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 1 Open Access
Notes ; M.D.C. acknowledges the support from the Back to Belgium Grant of the federal Science Policy (BELSPO). ; Approved Most recent IF: 1.404; 2014 IF: 0.942
Call Number UA @ lucian @ c:irua:118745 Serial 378
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Nanoscale superconductivity: nanowires and nanofilms Type A1 Journal article
Year 2008 Publication Physica: C : superconductivity Abbreviated Journal (down) Physica C
Volume 468 Issue 7/10 Pages 593-598
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000257355300021 Publication Date 2008-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 6 Open Access
Notes Approved Most recent IF: 1.404; 2008 IF: 0.740
Call Number UA @ lucian @ c:irua:69623 Serial 2273
Permanent link to this record
 

 
Author Peeters, F.M.; Croitoru, M.D.; Shanenko, A.A.
Title Nanowires and nanofilms: superconductivity in quantum-size regime Type A1 Journal article
Year 2008 Publication Physica: C : superconductivity Abbreviated Journal (down) Physica C
Volume 468 Issue 4 Pages 326-330
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000254816500017 Publication Date 2007-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 3 Open Access
Notes Approved Most recent IF: 1.404; 2008 IF: 0.740
Call Number UA @ lucian @ c:irua:69621 Serial 2283
Permanent link to this record
 

 
Author Komendová, L.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title The healing lengths in two-band superconductors in extended Ginzburg-Landau theory Type A1 Journal article
Year 2012 Publication Physica: C : superconductivity Abbreviated Journal (down) Physica C
Volume 479 Issue Pages 126-129
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the vortex profiles in two-gap superconductors using the extended Ginzburg-Landau theory. The results shed more light on the disparity between the effective length scales in two bands. We compare the behavior expected from the standard Ginzburg-Landau theory with this new approach, and find good qualitative agreement in the case of LiFeAs. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000308580600029 Publication Date 2012-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 1 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. ; Approved Most recent IF: 1.404; 2012 IF: 0.718
Call Number UA @ lucian @ c:irua:101871 Serial 3585
Permanent link to this record
 

 
Author Shanenko, A.A.; Vagov, A.; Peeters, F.M.; Aguiar, J.A.
Title Nanofilms as effectively multiband superconductors: Intraband-pairing approximation and Ginzburg-Landau theory Type A1 Journal article
Year 2014 Publication Physica: B : condensed matter Abbreviated Journal (down) Physica B
Volume 455 Issue Pages 3-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract It is well-known that the Ginzburg-Landau (GL) theory is a reliable and powerful theoretical tool to investigate the magnetic response of a superconducting state. However, in its standard form, this approach is not applicable to atomically uniform nano-thin superconducting films which are effective multiband superconductors. Here we discuss a relevant generalization of the GL theory, focusing on the underlying intraband-pairing approximation. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000344239200002 Publication Date 2014-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 1 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-VI), and the Methusalem program. A.A.S. acknowledges the support of the Brazilian agencies CNPq and FACEPE (APQ-0589-1.05/08). ; Approved Most recent IF: 1.386; 2014 IF: 1.319
Call Number UA @ lucian @ c:irua:121192 Serial 2256
Permanent link to this record
 

 
Author Aguiar, J.A.; Roa-Rojas, J.; Parra Vargas, C.A.; Landinez Tellez, D.A.; Corredor Bohorquez, L.T.; Shanenko, A.; Jardim, R.F.; Peeters, F.
Title Preface Type Editorial
Year 2014 Publication Physica: B : condensed matter Abbreviated Journal (down) Physica B
Volume 455 Issue Pages 1-2
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Elsevier science bv Place of Publication Amsterdam Editor
Language Wos 000344239200001&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7 Publication Date 2014-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS citing articles; WoS full record
Impact Factor 1.386 Times cited Open Access
Notes ; ; Approved Most recent IF: 1.386; 2014 IF: 1.319
Call Number UA @ lucian @ c:irua:121191 Serial 2696
Permanent link to this record
 

 
Author Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title Extended Ginzburg-Landau formalism for two-band superconductors Type A1 Journal article
Year 2011 Publication Physical review letters Abbreviated Journal (down) Phys Rev Lett
Volume 106 Issue 4 Pages 047005-047005,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent observation of unusual vortex patterns in MgB2 single crystals raised speculations about possible type-1.5 superconductivity in two-band materials, mixing the properties of both type-I and type-II superconductors. However, the strict application of the standard two-band Ginzburg-Landau (GL) theory results in simply proportional order parameters of the two bandsand does not support the type-1.5 behavior. Here we derive the extended GL formalism (accounting all terms of the next order over the small τ=1-T/Tc parameter) for a two-band clean s-wave superconductor and show that the two condensates generally have different spatial scales, with the difference disappearing only in the limit T→Tc. The extended version of the two-band GL formalism improves the validity of GL theory below Tc and suggests revisiting the earlier calculations based on the standard model.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000286734100010 Publication Date 2011-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 84 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. Discussions with M. D. Croitoru are gratefully acknowledged. ; Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:88038 Serial 1154
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Mints, R.G.; Peeters, F.M.
Title New Andreev-type states in superconducting nanowires Type A1 Journal article
Year 2007 Publication Physical review letters Abbreviated Journal (down) Phys Rev Lett
Volume 99 Issue Pages 067007,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000248664700056 Publication Date 2007-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 30 Open Access
Notes Fwo -Vi; Bof-Top; Iap Approved Most recent IF: 8.462; 2007 IF: 6.944
Call Number UA @ lucian @ c:irua:69664 Serial 2304
Permanent link to this record
 

 
Author Komendová, L.; Chen, Y.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title Two-band superconductors : hidden criticality deep in the superconducting state Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal (down) Phys Rev Lett
Volume 108 Issue 20 Pages 207002-207002,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that two-band superconductors harbor hidden criticality deep in the superconducting state, stemming from the critical temperature of the weaker band taken as an independent system. For sufficiently small interband coupling gamma the coherence length of the weaker band exhibits a remarkable deviation from the conventional monotonic increase with temperature, namely, a pronounced peak close to the hidden critical point. The magnitude of the peak scales as proportional to gamma(-mu), with the Landau critical exponent mu = 1/3, the same as found for the mean-field critical behavior with respect to the source field in ferromagnets and ferroelectrics. Here reported hidden criticality of multiband superconductors can be experimentally observed by, e.g., imaging of the variations of the vortex core in a broader temperature range. Similar effects are expected for the superconducting multilayers.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000304064000017 Publication Date 2012-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 75 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Useful discussions with A. V. Vagov are acknowledged. ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:98945 Serial 3770
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Dependence of superconducting properties on the size and shape of a nanoscale superconductor: from nanowire to film Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 76 Issue Pages 024511,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000248496200104 Publication Date 2007-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 54 Open Access
Notes Fwo-Vi; Iap; Bof-Top Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:69655 Serial 643
Permanent link to this record
 

 
Author Komendová, L.; Milošević, M.V.; Shanenko, A.A.; Peeters, F.M.
Title Different length scales for order parameters in two-gap superconductors : extended Ginzburg-Landau theory Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 84 Issue 6 Pages 064522-064522,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the Ginzburg-Landau theory extended to the next-to-leading order, we determine numerically the healing lengths of the two order parameters at the two-gap superconductor/normal metal interface. We demonstrate on several examples that those can be different even in the strict domain of applicability of the Ginzburg-Landau theory. This justifies the use of this theory to describe relevant physics of two-gap superconductors, distinguishing them from their single-gap counterparts. The calculational degree of complexity increases only slightly with respect to the conventional Ginzburg-Landau expansion, thus the extended Ginzburg-Landau model remains numerically far less demanding compared to the full microscopic approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000294226000013 Publication Date 2011-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 56 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:92414 Serial 695
Permanent link to this record
 

 
Author Vagov, A.V.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Extended Ginzburg-Landau formalism : systematic expansion in small deviation from the critical temperature Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 85 Issue 1 Pages 014502-014502,17
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Based on the Gor'kov formalism for a clean s-wave superconductor, we develop an extended version of the single-band Ginzburg-Landau (GL) theory by means of a systematic expansion in the deviation from the critical temperature T(c), i.e., tau = 1 – T/T(c). We calculate different contributions to the order parameter and the magnetic field: the leading contributions (proportional to tau(1/2) in the order parameter and. t in the magnetic field) are controlled by the standard GL theory, while the next-to-leading terms (proportional to tau(3/2) in the gap and proportional to tau(2) in the magnetic field) constitute the extended GL (EGL) approach. We derive the free-energy functional for the extended formalism and the corresponding expression for the current density. To illustrate the usefulness of our formalism, we calculate, in a semianalytical form, the temperature-dependent correction to the GL parameter at which the surface energy becomes zero, and analytically, the temperature dependence of the thermodynamic critical field. We demonstrate that the EGL formalism is not just a mathematical extension to the theory: variations of both the gap and the thermodynamic critical field with temperature calculated within the EGL theory are found in very good agreement with the full BCS results down to low temperatures, which dramatically improves the applicability of the formalism compared to its standard predecessor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298985100002 Publication Date 2012-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 36 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). A. V. V. is grateful to V. Zalipaev for important comments. A. A. S. thanks W. Pogosov for helpful notes. Discussions with E. H. Brandt and A. Perali are appreciated. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:96232 Serial 1155
Permanent link to this record
 

 
Author Vagov, A.; Schomerus, H.; Shanenko, A.
Title Generalized Galitskii approach for the vertex function of a Fermi gas with resonant interaction Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 76 Issue 21 Pages 214513-214517
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a generalized Galitskii approach for the Bethe-Salpeter equation for the two-particle vertex function of a Fermi system with the resonant interaction by accounting for the resonant state in the scattering potential and utilizing the universal form of the resonant scattering amplitude. The procedure can be carried out both for the normal as well as for the condensate state. In both cases, the vertex function in the vicinity of the resonance is shown to formally coincide with that obtained for a weakly attractive Fermi gas. Thus we justify the popular calculational framework in which results for the weakly attractive Fermi gas are formally extrapolated into the domain of strong coupling, and further to the repulsive side of the resonance, where molecular states are formed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000251986100097 Publication Date 2007-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:104037 Serial 1324
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M.
Title Giant drop in the Bardeen-Cooper-Schrieffer coherence length induced by quantum size effects in superconducting nanowires Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 82 Issue 10 Pages 104524-104524,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The BCS coherence length in low-dimensional superconductors is dramatically modified by quantum-size effects. In particular, for nanowires made of conventional superconducting materials, we show that the longitudinal zero-temperature coherence length exhibits width-dependent drops by 23 orders of magnitude each time when the bottom of one of single-electron subbands formed due to the transverse quantization of electron motion is situated in a close vicinity to the Fermi level. This phenomenon has strong similarities to the well-known BCS-BEC (Bose-Einstein condensation) crossover in ultracold fermionic condensates but with an important exception: it is driven by the transverse quantization of the electron motion rather than by the externally controlled strength of the fermion-fermion interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282269600005 Publication Date 2010-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-network: INSTANS. M. D. C. acknowledges support from the Alexander von Humboldt Foundation. A. A. S. thanks R. G. Mints, W. V. Pogosov, D. Y. Vodolazov, A. Perali, and A. Bianconi for fruitful discussions. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85419 Serial 1337
Permanent link to this record
 

 
Author Orlova, N.V.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.; Vagov, A.V.; Axt, V.M.
Title Ginzburg-Landau theory for multiband superconductors : microscopic derivation Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 87 Issue 13 Pages 134510-134518
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A procedure to derive the Ginzburg-Landau (GL) theory from the multiband BCS Hamiltonian is developed in a general case with an arbitrary number of bands and arbitrary interaction matrix. It combines the standard Gor'kov truncation and a subsequent reconstruction in order to match accuracies of the obtained terms. This reconstruction recovers the phenomenological GL theory as obtained from the Landau model of phase transitions but offers explicit microscopic expressions for the relevant parameters. Detailed calculations are presented for a three-band system treated as a prototype multiband superconductor. It is demonstrated that the symmetry in the coupling matrix may lead to the chiral ground state with the phase frustration, typical for systems with broken time-reversal symmetry. DOI: 10.1103/PhysRevB.87.134510
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317586700002 Publication Date 2013-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 57 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). A.A.S. acknowledges useful discussions with D. Neilson. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108464 Serial 1344
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M.
Title Hollow nanocylinder: multisubband superconductivity induced by quantum confinement Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 81 Issue 13 Pages 134523-134523:11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quantization of the transverse electron motion in high-quality superconducting metallic nanowires and nanofilms results in the formation of well-distinguished single-electron subbands. They shift in energy with changing thickness, which is known to cause quantum-size superconducting oscillations. The formation of multiple subbands results in a multigap structure induced by the interplay between quantum confinement and Andreev mechanism. We investigate multisubband superconductivity in a hollow nanocylinder by numerically solving the Bogoliubov-de Gennes equations. When changing the inner radius and thickness of the hollow nanocylinder, we find a crossover from an irregular pattern of quantum-size superconducting oscillations, typical of nanowires, to an almost regular regime, specific for superconducting nanofilms. At this crossover the multigap structure becomes degenerate. The ratio of the critical temperature to the energy gap increases and approaches its bulk value while being reduced by 20-30% due to Andreev-type states driven by quantum confinement in the irregular regime.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000277207900098 Publication Date 2010-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Interuniversity Attraction Poles Programme, Belgian States, Belgian Science Policy (IAP) and the ESF-AQDJJ network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:95623 Serial 1481
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Magnetic-field induced quantum-size cascades in superconducting nanowires Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 78 Issue 2 Pages 024505,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000258190200105 Publication Date 2008-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 42 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:70559 Serial 1876
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M.
Title Metallic nanograins : spatially nonuniform pairing induced by quantum confinement Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 83 Issue 21 Pages 214509-214509,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract It is well known that the formation of discrete electron levels strongly influences the pairing in metallic nanograins. Here, we focus on another effect of quantum confinement in superconducting grains that was not studied previously, i.e., spatially nonuniform pairing. This effect is very significant when single-electron levels form bunches and/or a kind of shell structure. We find that, in highly symmetric grains, the order parameter can exhibit variations with position by an order of magnitude. Nonuniform pairing is closely related to a quantum-confinement-induced modification of the pairing-interaction matrix elements and size-dependent pinning of the chemical potential to groups of degenerate or nearly degenerate levels. For illustrative purposes, we consider spherical metallic nanograins and also rectangular shapes. We show that the relevant matrix elements are, as a rule, enhanced in the presence of quantum confinement, which favors spatial variations of the order parameter, compensating the corresponding energy cost. The size-dependent pinning of the chemical potential further increases the spatial variation of the pair condensate. The role of nonuniform pairing is smaller in less symmetric confining geometries and/or in the presence of disorder. However, it always remains of importance when the energy spacing between discrete electron levels δ is approaching the scale of the bulk gap ΔB, i.e., δ>0.10.2 ΔB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000291310000006 Publication Date 2011-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes ; This work was supported by the Alexander von Humboldt Foundation, the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP). M. D. C. acknowledges support of the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90081 Serial 2010
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Oscillations of the superconducting temperature induced by quantum well states in thin metallic films: numerical solution of the Bogoliubov-de Gennes equations Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 75 Issue 1 Pages 014519,1-9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000243894600126 Publication Date 2007-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 85 Open Access
Notes Fwo-Vi; Bof-Top; Iap Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:63749 Serial 2535
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.; Axt, V.M.
Title Parity-fluctuation induced enlargement of the ratio \DeltaE/kBTc in metallic grains Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 84 Issue 21 Pages 214518-214518,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate how the interplay of quantum confinement and particle number-parity fluctuations affects superconducting correlations in ultra-small metallic grains. Using the number-parity projected BCS formalism we calculate the critical temperature and the excitation gap as a function of the grain size for grains with even and odd number of confined carriers. We show that the experimentally observed anomalous increase of the coupling ratio ΔE/kBTc with decreasing superconducting grain size can be attributed to an enhancement of the number-parity fluctuations in ultra-small grains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298114100003 Publication Date 2011-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flamish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). M. D. C. thanks A. S. Mel'nikov and N. B. Kopnin for fruitful discussions. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94373 Serial 2555
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.
Title Shape resonances in the superconducting order parameter of ultrathin nanowires Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 73 Issue 1 Pages 012510,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000235009000033 Publication Date 2006-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:56613 Serial 2990
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Zgirski, M.; Peeters, F.M.; Arutyunov, K.
Title Size-dependent enhancement of superconductivity in Al and Sn nanowires: shape-resonance effect Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 74 Issue 5 Pages 052502,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000240238400015 Publication Date 2007-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 95 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:60806 Serial 3034
Permanent link to this record
 

 
Author Smondyrev, M.A.; Shanenko, A.A.; Devreese, J.T.
Title Stability criterion for large bipolarons in a polaron-gas background Type A1 Journal article
Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (down) Phys Rev B
Volume 63 Issue Pages 024302,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited Open Access
Notes Approved Most recent IF: 3.836; 2001 IF: NA
Call Number UA @ lucian @ c:irua:34310 Serial 3122
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Superconducting nanofilms: Andreev-type states induced by quantum confinement Type A1 Journal article
Year 2008 Publication Physical review : B : solid state Abbreviated Journal (down) Phys Rev B
Volume 78 Issue 5 Pages 054505,1-054505,8
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Quantum confinement of the transverse electron motion is the major effect governing the superconducting properties of high-quality metallic nanofilms, leading to a nonuniform transverse distribution of the superconducting condensate. In this case the order parameter can exhibit significant local enhancements due to these quantum-size effects and, consequently, quasiparticles have lower energies when they avoid the local enhancements of the pair condensate. Such excitations can be considered as new Andreev-type quasiparticles but now induced by quantum confinement. By numerically solving the Bogoliubovde Gennes equations and using Anderson's approximate solution to these equations, we: (a) formulate a criterion for such new Andreev-type states (NATS) and (b) study their effect on the superconducting characteristics in metallic nanofilms. We also argue that nanofilms made of low-carrier-density materials, e.g., of superconducting semiconductors, can be a more optimal choice for the observations of NATS and other quantum-size superconducting effects.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000259368200109 Publication Date 2008-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76526 Serial 3356
Permanent link to this record