toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mao, D.; Lookman, R.; van de Weghe, H.; Weltens, R.; Vanermen, G.; Brucker, N.; Diels, L. doi  openurl
  Title Estimation of ecotoxicity of petroleum hydrocarbon mixtures in soil based on HPLC-GCXGC analysis Type A1 Journal article
  Year (down) 2009 Publication Chemosphere Abbreviated Journal  
  Volume 77 Issue 11 Pages 1508-1513  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Detailed HPLCGCXGC/FID (high performance liquid chromatography followed by comprehensive two-dimensional gas chromatography with flame-ionization detection) analysis of oil-contaminated soils was performed to interpret results of selected acute ecotoxicity assays. For the five ecotoxicity assays tested, plant seed germination and Microtox® were selected as most sensitive for evaluating ecotoxicity of the oil in the soil phase and in the leaching water, respectively. The measured toxicity for cress when testing the soil samples did not correspond to TPH concentration in the soil. A detailed chemical composition analysis of the oil contamination using HPLCGCXGC/FID allows to better predict the ecotoxicological risk and leaching potential of petroleum hydrocarbons in soil. Cress biomass production per plant was well correlated to the total aromatic hydrocarbon concentration (R2 = 0.79, n = 6), while cress seed germination was correlated (R2 = 0.82, n = 6) with total concentration of highly water-soluble aromatic hydrocarbons (HSaromatics). The observed ecotoxicity of the leaching water for Microtox-bacteria related well to calculated (based on the HPLCGCXGC/FID results) petroleum hydrocarbon equilibrium concentrations in water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000272598700008 Publication Date 2009-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:80310 Serial 7935  
Permanent link to this record
 

 
Author Mao, D.; Lookman, R.; van de Weghe, H.; Weltens, R.; Vanermen, G.; de Brucker, N.; Diels, L. doi  openurl
  Title Combining HPLC-GCXGC, GCXGC/ToF-MS, and selected ecotoxicity assays for detailed monitoring of petroleum hydrocarbon degradation in soil and leaching water Type A1 Journal article
  Year (down) 2009 Publication Environmental science and technology Abbreviated Journal  
  Volume 43 Issue 20 Pages 7651-7657  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract HPLC-GCXGC/FID (high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography with flame-ionization detection) and GCXGC/ToF-MS (comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry) were used to study the biodegradation of petroleum hydrocarbons in soil microcosms during 20 weeks. Two soils were studied: one spiked with fresh diesel and one field sample containing weathered diesel-like oil. Nutrient amended and unamended samples were included. Total petroleum hydrocarbon (TPH) levels in spiked soil decreased from 15000 to 7500 mg/kg d.m. and from 12000 to 4000 mg/kg d.m. in the field soil. Linear alkanes and aromatic hydrocarbons were better biodegradable (>60% degraded) than iso-alkanes; cycloalkanes were least degradable (<40%). Aromatic hydrocarbons up to three rings showed better degradability than n-alkanes. GCXGC/ToF-MS analysis of leaching water showed that initially various oxygenated hydrocarbons were produced. Compound peaks seemed to move up and rightward in the GCXGC chromatograms, indicating that more polar and heavier compounds were formed as biodegradation proceeded. Nutrient amendment can increase TPH removal rates, but had adverse effects on ecotoxicity and leaching potential in our experiment. This was explained by observed shifts in the soil microbial community. Ecotoxicity assays showed that residual TPH still inhibited cress (Lepidium sativum) seed germination, but the leaching water was no longer toxic toward luminescent bacteria (Vibrio fischeri).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000270594900014 Publication Date 2009-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:79168 Serial 7683  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: