|   | 
Details
   web
Records
Author De Bie, C.; Verheyde, B.; Martens, T.; van Dijk, J.; Paulussen, S.; Bogaerts, A.
Title Fluid modeling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge Type A1 Journal article
Year (down) 2011 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 8 Issue 11 Pages 1033-1058
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A one-dimensional fluid model for a dielectric barrier discharge in methane, used as a chemical reactor for gas conversion, is developed. The model describes the gas phase chemistry governing the conversion process of methane to higher hydrocarbons. The spatially averaged densities of the various plasma species as a function of time are discussed. Besides, the conversion of methane and the yields of the reaction products as a function of the residence time in the reactor are shown and compared with experimental data. Higher hydrocarbons (C2Hy and C3Hy) and hydrogen gas are typically found to be important reaction products. Furthermore, the main underlying reaction pathways are determined.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000297745500005 Publication Date 2011-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 70 Open Access
Notes Approved Most recent IF: 2.846; 2011 IF: 2.468
Call Number UA @ lucian @ c:irua:92443 Serial 1227
Permanent link to this record
 

 
Author De Bie, C.; Martens, T.; van Dijk, J.; Paulussen, S.; Verheyde, B.; Corthals, S.; Bogaerts, A.
Title Dielectric barrier discharges used for the conversion of greenhouse gases: modeling the plasma chemistry by fluid simulations Type A1 Journal article
Year (down) 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 20 Issue 2 Pages 024008,1-024008,11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The conversion of methane to value-added chemicals and fuels is considered to be one of the challenges of the 21st century. In this paper we study, by means of fluid modeling, the conversion of methane to higher hydrocarbons or oxygenates by partial oxidation with CO2 or O2 in a dielectric barrier discharge. Sixty-nine different plasma species (electrons, ions, molecules, radicals) are included in the model, as well as a comprehensive set of chemical reactions. The calculation results presented in this paper include the conversion of the reactants and the yields of the reaction products as a function of residence time in the reactor, for different gas mixing ratios. Syngas (i.e. H2 + CO) and higher hydrocarbons (C2Hx) are typically found to be important reaction products.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000290719900009 Publication Date 2011-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 38 Open Access
Notes Approved Most recent IF: 3.302; 2011 IF: 2.521
Call Number UA @ lucian @ c:irua:87868 Serial 689
Permanent link to this record
 

 
Author Paulussen, S.; Verheyde, B.; Tu, X.; De Bie, C.; Martens, T.; Petrovic, D.; Bogaerts, A.; Sels, B.
Title Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges Type A1 Journal article
Year (down) 2010 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 19 Issue 3 Pages 034015,1-034015,6
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The aim of this work consists of the evaluation of atmospheric pressure dielectric barrier discharges for the conversion of greenhouse gases into useful compounds. Therefore, pure CO2 feed flows are administered to the discharge zone at varying discharge frequency, power input, gas temperature and feed flow rates, aiming at the formation of CO and O2. The discharge obtained in CO2 is characterized as a filamentary mode with a microdischarge zone in each half cycle of the applied voltage. It is shown that the most important parameter affecting the CO2-conversion levels is the gas flow rate. At low flow rates, both the conversion and the CO-yield are significantly higher. In addition, also an increase in the gas temperature and the power input give rise to higher conversion levels, although the effect on the CO-yield is limited. The optimum discharge frequency depends on the power input level and it cannot be unambiguously stated that higher frequencies give rise to increased conversion levels. A maximum CO2 conversion of 30% is achieved at a flow rate of 0.05 L min−1, a power density of 14.75 W cm−3 and a frequency of 60 kHz. The most energy efficient conversions are achieved at a flow rate of 0.2 L min−1, a power density of 11 W cm−3 and a discharge frequency of 30 kHz.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000277982800016 Publication Date 2010-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 116 Open Access
Notes Approved Most recent IF: 3.302; 2010 IF: 2.218
Call Number UA @ lucian @ c:irua:82408 Serial 512
Permanent link to this record