|   | 
Details
   web
Records
Author Lugli, L.F.; Fuchslueger, L.; Vallicrosa, H.; Van Langenhove, L.; Ranits, C.; Garberi, P.R.F.; Verryckt, L.; Grau, O.; Brechet, L.; Peguero, G.; Llusia, J.; Ogaya, R.; Marquez, L.; Portillo-Estrada, M.; Ramirez-Rojas, I.; Courtois, E.; Stahl, C.; Sardans, J.; Penuelas, J.; Verbruggen, E.; Janssens, I.
Title Contrasting responses of fine root biomass and traits to large-scale nitrogen and phosphorus addition in tropical forests in the Guiana shield Type A1 Journal article
Year (down) 2024 Publication Oikos: a journal of ecology Abbreviated Journal
Volume 2024 Issue 4 Pages e10412-14
Keywords A1 Journal article; Engineering sciences. Technology; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Fine roots mediate plant nutrient acquisition and growth. Depending on soil nutrient availability, plants can regulate fine root biomass and morphological traits to optimise nutrient acquisition. Little is known, however, about the importance of these parameters influencing forest functioning. In this study, we measured root responses to nutrient additions to gain a mechanistic understanding of plant adaptations to nutrient limitation in two tropical forests in French Guiana, differing twofold in their soil nutrient statuses. We analysed the responses of root biomass, mean root diameter (RD), specific root length (SRL), specific root area (SRA), root tissue density (RTD) and carbon (C), nitrogen (N) and phosphorus (P) concentrations in roots down to 15 cm soil depth after three years of N and P additions. At the lower-fertility site Paracou, no changes in root biomass or morphological traits were detected with either N or P addition, although P concentrations in roots increased with P addition. In the higher fertility site, Nouragues, root biomass and P concentrations in roots increased with P addition, with no changes in morphological traits. In contrast, N addition shifted root traits from acquisitive to more conservative by increasing RTD. A significant interaction between N and P in Nouragues pointed to stronger responses to P addition in the absence of N. Our results suggest that the magnitude and direction of root biomass and trait expression were regulated by soil fertility, corroborated by the response to N or P additions. At low fertility sites, we found lower plasticity in root trait expression compared to more fertile conditions, where N and P additions caused stronger and antagonistic responses. Identifying the exact role of mechanisms affecting root nutrient uptake in Amazon forests growing in different soils will be crucial to foresee if and how rapid global changes can affect their carbon allocation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001142552200001 Publication Date 2024-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0030-1299 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:202834 Serial 9195
Permanent link to this record
 

 
Author Fang, C.; Verbrigghe, N.; Sigurdsson, B.D.D.; Ostonen, I.; Leblans, N.I.W.; Maranon-Jimenez, S.; Fuchslueger, L.; Sigurosson, P.; Meeran, K.; Portillo-Estrada, M.; Verbruggen, E.; Richter, A.; Sardans, J.; Penuelas, J.; Bahn, M.; Vicca, S.; Janssens, I.A.
Title Decadal soil warming decreased vascular plant above and belowground production in a subarctic grassland by inducing nitrogen limitation Type A1 Journal article
Year (down) 2023 Publication New phytologist Abbreviated Journal
Volume 240 Issue 2 Pages 565-576
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3 degrees C and +7.9 degrees C) on below and aboveground plant biomass stocks and production in a subarctic grassland. Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root-shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area. These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001043561400001 Publication Date 2023-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-646x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:198443 Serial 9199
Permanent link to this record
 

 
Author Vallicrosa, H.; Lugli, L.F.; Fuchslueger, L.; Sardans, J.; Ramirez-Rojas, I.; Verbruggen, E.; Grau, O.; Brechet, L.; Peguero, G.; Van Langenhove, L.; Verryckt, L.T.; Terrer, C.; Llusia, J.; Ogaya, R.; Marquez, L.; Roc-Fernandez, P.; Janssens, I.; Penuelas, J.
Title Phosphorus scarcity contributes to nitrogen limitation in lowland tropical rainforests Type A1 Journal article
Year (down) 2023 Publication Ecology Abbreviated Journal
Volume 104 Issue 6 Pages e4049-12
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract There is increasing evidence to suggest that soil nutrient availability can limit the carbon sink capacity of forests, a particularly relevant issue considering today's changing climate. This question is especially important in the tropics, where most part of the Earth's plant biomass is stored. To assess whether tropical forest growth is limited by soil nutrients and to explore N and P limitations, we analyzed stem growth and foliar elemental composition of the five stem widest trees per plot at two sites in French Guiana after 3 years of nitrogen (N), phosphorus (P), and N + P addition. We also compared the results between potential N-fixer and non-N-fixer species. We found a positive effect of N fertilization on stem growth and foliar N, as well as a positive effect of P fertilization on stem growth, foliar N, and foliar P. Potential N-fixing species had greater stem growth, greater foliar N, and greater foliar P concentrations than non-N-fixers. In terms of growth, there was a negative interaction between N-fixer status, N + P, and P fertilization, but no interaction with N fertilization. Because N-fixing plants do not show to be completely N saturated, we do not anticipate N providing from N-fixing plants would supply non-N-fixers. Although the soil-age hypothesis only anticipates P limitation in highly weathered systems, our results for stem growth and foliar elemental composition indicate the existence of considerable N and P co-limitation, which is alleviated in N-fixing plants. The evidence suggests that certain mechanisms invest in N to obtain the scarce P through soil phosphatases, which potentially contributes to the N limitation detected by this study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000977760600001 Publication Date 2023-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658; 1939-9170 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:196804 Serial 9218
Permanent link to this record