|   | 
Details
   web
Records
Author Winterstetter, A.; Grodent, M.; Kini, V.; Ragaert, K.; Vrancken, K.C.M.
Title A review of technological solutions to prevent or reduce marine plastic litter in developing countries Type A1 Journal article
Year (down) 2021 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume 13 Issue 9 Pages 4894
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Growing global plastic production combined with poor waste collection has led to increasing amounts of plastic debris being found in oceans, rivers and on shores. The goal of this study is to provide an overview on currently available technological solutions to tackle marine plastic litter and to assess their potential use in developing countries. To compile an inventory of technological solutions, a dedicated online platform was developed. A total of 51 out of initially 75 submitted solutions along the plastics value chain were assessed by independent experts. Collection systems represent more than half of the shortlisted solutions. A quarter include processing and treatment technologies, either as a stand-alone solution (30%) or, more commonly, in combination with a first litter capturing step. Ten percent offer digital solutions. The rest focuses on integrated waste management solutions. For each stage in the source-to-sea spectrum-land, rivers, sea-two illustrative examples are described in detail. This study concludes that the most cost-effective type of solution tackles land-based sources of marine litter and combines technology with people-oriented practices, runs on own energy sources, connects throughout the plastics value chain with a convincing valorization plan for captured debris, and involves all relevant stakeholders.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000650920900001 Publication Date 2021-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.789 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.789
Call Number UA @ admin @ c:irua:178368 Serial 7396
Permanent link to this record
 

 
Author Kleinhans, K.; Hallemans, M.; Huysveld, S.; Thomassen, G.; Ragaert, K.; Van Geem, K.M.; Roosen, M.; Mys, N.; Dewulf, J.; De Meester, S.
Title Development and application of a predictive modelling approach for household packaging waste flows in sorting facilities Type A1 Journal Article
Year (down) 2021 Publication Waste Management Abbreviated Journal Waste Management
Volume 120 Issue Pages 290-302
Keywords A1 Journal Article; Engineering Management (ENM) ;
Abstract Household packaging waste sorting facilities consist of complex networks of processes to separate diverse waste streams. These facilities are a key first step to re-enter materials into the recycling chain. However, so far there are no general methods to predict the performance of such sorting facilities, i.e.

how efficiently the heterogeneous packaging waste is sorted into fractions with value for further recycling. In this paper, a model of the material flow in a sorting facility is presented, which allows changing the incoming waste composition, split factors on the sorting units as well as the setup of the sorting facility. The performance of the sorting facility is judged based on the purity of the output material (grade) and the recovery of the input material. A validation of the model was performed via a case study on Belgian post-consumer packaging waste with a selection of typical waste items that can be found in this stream. Moreover, the model was used to predict the possible sorting qualities of future Belgian postconsumer packaging waste after an extension of the allowed waste packaging items in the waste stream. Finally, a sensitivity analysis was performed on the split factors, which are a key data source in the model. Overall, the developed model is flexible and able to predict the performance of packaging waste sorting facilities as well as support waste management and design for recycling decisions, including future

design of packaging, to ensure proper sorting and separation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956053X ISBN Additional Links
Impact Factor Times cited Open Access Not_Open_Access
Notes We would like to thank Indaver (https://www.indaver.com/been/home/), especially Erik Huybrechts, Eric Goddaert, Eline Meyvis and Erik Moerman, for their great support on this research. Furthermore, we would like to acknowledge the help of Colruyt (https://www.colruyt.be/) and CEFLEX (https://ceflex.eu/) for the pre-studies for this research. Moreover, we would like to show our appreciation for the financial support by the Catalisti-ICON project (HBC.2018.0262) MATTER (Mechanical and Thermochemical Recycling of mixed plastic waste) funded by Flanders Innovation & Entrepreneurship (VLAIO). We also thank the Interreg 2 Seas program PlastiCity that is co-funded by the European Regional Development Fund under subsidy contract No. 2S05-021 and the province of East-Flanders for funding this research. Approved Most recent IF: NA
Call Number ENM @ enm @ Serial 6667
Permanent link to this record