|   | 
Details
   web
Records
Author Aghaei, M.; Lindner, H.; Bogaerts, A.
Title Ion Clouds in the Inductively Coupled Plasma Torch: A Closer Look through Computations Type A1 Journal article
Year (down) 2016 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 88 Issue 88 Pages 8005-8018
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We have computationally investigated the introduction of copper elemental particles in an inductively coupled plasma torch connected to a sampling cone, including for the first time the ionization of the sample. The sample is inserted as liquid particles, which are followed inside the entire torch, i.e., from the injector inlet up to the ionization and reaching the sampler. The spatial position of the ion clouds inside the torch as well as detailed information on the copper species fluxes at the position of the sampler orifice and the exhausts of the torch are provided. The effect of on- and off-axis injection is studied. We clearly show that the ion clouds of on-axis injected material are located closer to the sampler with less radial diffusion. This guarantees a higher transport efficiency through the sampler cone. Moreover, our model reveals the optimum ranges of applied power and flow rates, which ensure the proper position of ion clouds inside the torch, i.e., close enough to the sampler to increase the fraction that can enter the mass spectrometer and with minimum loss of material toward the exhausts as well as a sufficiently high plasma temperature for efficient ionization.
Address Research Group PLASMANT, Chemistry Department, University of Antwerp , Universiteitsplein 1, 2610 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000381654800020 Publication Date 2016-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 9 Open Access
Notes The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO), Grant Number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 6.32
Call Number PLASMANT @ plasmant @ c:irua:135644 Serial 4293
Permanent link to this record
 

 
Author Aghaei, M.; Flamigni, L.; Lindner, H.; Günther, D.; Bogaerts, A.
Title Occurrence of gas flow rotational motion inside the ICP torch : a computational and experimental study Type A1 Journal article
Year (down) 2014 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 29 Issue 2 Pages 249-261
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma, connected to the sampling cone of a mass spectrometer, is computationally investigated. The occurrence of rotational motion of the auxiliary and carrier gas flows is studied. The effects of operating parameters, i.e., applied power and gas flow rates, as well as geometrical parameters, i.e., sampler orifice diameter and injector inlet diameter, are investigated. Our calculations predict that at higher applied power the auxiliary and carrier gas flows inside the torch move more forward to the sampling cone, which is validated experimentally for the auxiliary gas flow, by means of an Elan 6000 ICP-MS. Furthermore, an increase of the gas flow rates can also modify the occurrence of rotational motion. This is especially true for the carrier gas flow rate, which has a more pronounced effect to reduce the backward motion than the flow rates of the auxiliary and cooling gas. Moreover, a larger sampler orifice (e.g., 2 mm instead of 1 mm) reduces the backward flow of the auxiliary gas path lines. Finally, according to our model, an injector inlet of 2 mm diameter causes more rotations in the carrier gas flow than an injector inlet diameter of 1.5 mm, which can be avoided again by changing the operating parameters.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000329934000005 Publication Date 2013-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 21 Open Access
Notes Approved Most recent IF: 3.379; 2014 IF: 3.466
Call Number UA @ lucian @ c:irua:112896 Serial 2427
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A.
Title The effect of the sampling cone position and diameter on the gas flow dynamics in an ICP Type A1 Journal article
Year (down) 2013 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 28 Issue 9 Pages 1485-1492
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma, connected to a sampling cone of a mass spectrometer, is computationally investigated. The effects of the sampler orifice diameter (ranging from 1 to 2 mm) and distance of the sampler cone from the load coil (ranging from 7 to 17 mm) are studied. An increase in sampler orifice diameter leads to a higher central plasma temperature at the place of the sampler, as well as more efficient gas transfer through the sampler, by reducing the interaction of the plasma gas with the sampling cone. However, the flow velocity at the sampler position is found to be independent of the sampler orifice diameter. Moreover, by changing the sampler orifice diameter, we can control whether only the central gas or also the auxiliary gas can exit through the sampler. Finally, with the increasing distance of the sampler from the load coil, the plasma temperature at the place of the sampler decreases slightly, which might also have consequences for the ion generation and transport through the sampling cone.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000322922300016 Publication Date 2013-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 14 Open Access
Notes Approved Most recent IF: 3.379; 2013 IF: 3.396
Call Number UA @ lucian @ c:irua:109204 Serial 848
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A.
Title Optimization of operating parameters for inductively coupled plasma mass spectrometry : a computational study Type A1 Journal article
Year (down) 2012 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 76 Issue Pages 56-64
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma, connected to a mass spectrometer interface, is computationally investigated. The effect of pressure behind the sampler, injector gas flow rate, auxiliary gas flow rate, and applied power is studied. There seems to be an optimum range of injector gas flow rate for each setup which guaranties the presence and also a proper length of the central channel in the torch. Moreover, our modeling results show that for any specific purpose, it is possible to control that either only the central gas flow passes through the sampler orifice or that it is accompanied by the auxiliary gas flow. It was also found that depending on geometry, the variation of outgoing gas flow rate is much less than the variation of the injector gas flow rate and this causes a slightly higher pressure inside the torch. The general effect of increasing the applied power is a rise in the plasma temperature, which results in a higher ionization in the coil region. However, the negative effect is reducing the length of the cool central channel which is important to transfer the sample substances to the sampler. Using a proper applied power can enhance the efficiency of the system. Indeed, by changing the gas path lines, the power can control which flow (i.e., only from injector gas or also from the auxiliary gas) goes to the sampler orifice. Finally, as also reported from experiments in literature, the pressure behind the sampler has no dramatic effect on the plasma characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000311008600008 Publication Date 2012-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 18 Open Access
Notes Approved Most recent IF: 3.241; 2012 IF: 3.141
Call Number UA @ lucian @ c:irua:101356 Serial 2488
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A.
Title Effect of a mass spectrometer interface on inductively coupled plasma characteristics : a computational study Type A1 Journal article
Year (down) 2012 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 27 Issue 4 Pages 604-610
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma connected to a mass spectrometer interface (sampling cone) is computationally investigated. Typical plasma characteristics, such as gas flow velocity, plasma temperature and electron density, are calculated in two dimensions (cylindrical symmetry) and compared with and without a mass spectrometer sampling interface. The results obtained from our model compare favorably with experimental data reported in the literature. A dramatic increase in the plasma velocity is reported in the region close to the interface. Furthermore, a cooled metal interface lowers the plasma temperature and electron density on the axial channel very close to the sampling cone but the corresponding values in the off axial regions are increased. Therefore, the effect of the interface strongly depends on the measurement position. It is shown that even a small shift from the actual position of the sampler leads to a considerable change of the results.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000301496700005 Publication Date 2012-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 18 Open Access
Notes Approved Most recent IF: 3.379; 2012 IF: 3.155
Call Number UA @ lucian @ c:irua:97386 Serial 791
Permanent link to this record
 

 
Author Lindner, H.; Murtazin, A.; Groh, S.; Niemax, K.; Bogaerts, A.
Title Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma Type A1 Journal article
Year (down) 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 83 Issue 24 Pages 9260-9266
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma (ICP) is analyzed by means of experiments and numerical simulation. Important plasma properties are analyzed, namely, the effective temperature inside the central channel and the mean flow velocity inside the plasma. Furthermore, the effect of torches with different injector diameters is studied by the model. The temperature inside the central channel is determined from the end-on collected line-to-background ratio in dependence of the injector gas flow rates. Within the limits of 3% deviation, the results of the simulation and the experiments are in good agreement in the range of flow rates relevant for the analysis of relatively large droplets, i.e., 50 μm. The deviation increases for higher gas flow rates but stays below 6% for all flow rates studied. The velocity of the gas inside the coil region was determined by side-on analyte emission measurements with single monodisperse droplet introduction and by the analysis of the injector gas path lines in the simulation. In the downstream region significantly higher velocities were found than in the upstream region in both the simulation and the experiment. The quantitative values show good agreement in the downstream region. In the upstream region, deviations were found in the absolute values which can be attributed to the flow conditions in that region and because the methods used for velocity determination are not fully consistent. Eddy structures are found in the simulated flow lines. These affect strongly the way taken by the path lines of the injector gas and they can explain the very long analytical signals found in the experiments at low flow rates. Simulations were performed for different injector diameters in order to find conditions where good analyte transport and optimum signals can be expected. The results clearly show the existence of a transition flow rate which marks the lower limit for effective analyte transport conditions through the plasma. A rule-of-thumb equation was extracted from the results from which the transition flow rate can be estimated for different injector diameters and different injector gas compositions.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297946900013 Publication Date 2011-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 34 Open Access
Notes Approved Most recent IF: 6.32; 2011 IF: 5.856
Call Number UA @ lucian @ c:irua:94001 Serial 3009
Permanent link to this record
 

 
Author Lindner, H.; Bogaerts, A.
Title Multi-element model for the simulation of inductively coupled plasmas : effects of helium addition to the central gas stream Type A1 Journal article
Year (down) 2011 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 66 Issue 6 Pages 421-431
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A model for an atmospheric pressure inductively coupled plasma (ICP) is developed which allows rather easy extension to a variable number of species and ionisation degrees. This encompasses an easy calculation of transport parameters for mixtures, ionisation and heat capacity. The ICP is modeled in an axisymmetric geometry, taking into account the gas streaming into a flowing ambient gas. A mixture of argon and helium is applied in the injector gas stream as it is often done in laser ablation ICP spectrometry. The results show a strong influence of the added helium on the center of the ICP, which is important for chemical analysis. The length of the central channel is significantly increased and the temperature inside is significantly higher than in the case of pure argon. This means that higher gas volume flow rates can be applied by addition of helium compared to the use of pure argon. This has the advantage that the gas velocity in the transport system towards the ICP can be increased, which allows shorter washout-times. Consequently, shorter measurement times can be achieved, e.g. for spatial mapping analyses in laser ablation ICP spectrometry. Furthermore, the higher temperature and the longer effective plasma length will increase the maximum size of droplets or particles injected into the ICP that are completely evaporated at the detection site. Thus, we expect an increase of the analytical performance of the ICP by helium addition to the injector gas.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000293488700003 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 28 Open Access
Notes Approved Most recent IF: 3.241; 2011 IF: 2.876
Call Number UA @ lucian @ c:irua:90190 Serial 2209
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M.; Autrique, D.; Lindner, H.; Chen, Z.; Wendelen, W.
Title Computer simulations of laser ablation, plume expansion and plasma formation Type H1 Book chapter
Year (down) 2011 Publication Abbreviated Journal
Volume Issue Pages 1-10
Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Trans Tech Place of Publication Aedermannsdorf Editor
Language Wos 000292658900001 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-8985; ISBN 978-3-03785-081-7 Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 8 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:88340 Serial 470
Permanent link to this record
 

 
Author Lindner, H.; Loper, K.H.; Hahn, D.W.; Niemax, K.
Title The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry Type A1 Journal article
Year (down) 2011 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 66 Issue 2 Pages 179-185
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000289328900012 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 12 Open Access
Notes Approved Most recent IF: 3.241; 2011 IF: 2.876
Call Number UA @ lucian @ c:irua:89008 Serial 1627
Permanent link to this record
 

 
Author Lindner, H.; Autrique, D.; Pisonero, J.; Günther, D.; Bogaerts, A.
Title Numerical simulation analysis of flow patterns and particle transport in the HEAD laser ablation cell with respect to inductively coupled plasma spectrometry Type A1 Journal article
Year (down) 2010 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 25 Issue 3 Pages 295-304
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The present study analyses a specific laser ablation cell, the High Efficiency Aerosol Dispersion (HEAD) cell (see J. Pisonero et al., J. Anal. At. Spectrom., 2006, 21, 922931), by means of computational fluid dynamics (CFD) simulations. However, this cell consists of different modular parts, therefore, the results are probably of interest for the further development of other ablation cells. In the HEAD cell, the ablation spot is positioned below an orifice in the ceiling of the sample chamber. The particle transport through this orifice has been analysed for a ceiling height of 0.8 mm. The critical velocity for the onset of particle losses was found to be independent on the ejection angle at the crater spot. The deceleration of the particles can be described as the stopping in an effectively steady gas. Particle losses were negligible in this modular part of the cell at the evaluated laser ablation conditions. The transport efficiency through the Venturi chamber was investigated for different sample gas flow rates. In this case, it was found that small particles were predominantly lost at low flow rates, the large particles at higher flow rates. Making use of the simulation results, it was possible to design a modification of the HEAD cell that results in extremely short calculated washout times. The simulations yielded a signal of less than 10 ms, which was produced by more than 99% of the introduced mass.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000274961600005 Publication Date 2010-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 16 Open Access
Notes Approved Most recent IF: 3.379; 2010 IF: 4.372
Call Number UA @ lucian @ c:irua:80871 Serial 2403
Permanent link to this record
 

 
Author Lindner, H.; Autrique, D.; Garcia, C.C.; Niemax, K.; Bogaerts, A.
Title Optimized transport setup for high repetition rate pulse-separated analysis in laser ablation-inductively coupled plasma mass spectrometry Type A1 Journal article
Year (down) 2009 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 81 Issue 11 Pages 4241-4248
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An optimized laser ablation setup, proposed for high repetition rate inductively coupled plasma mass spectrometry (ICPMS) analyses such as 2D imaging or depth profiling, is presented. For such applications, the particle washout time needs to be as short as possible to allow high laser pulse frequencies for reduced analysis time. Therefore, it is desirable to have an ablation setup that operates as a laminar flow reactor (LFR). A top-down strategy was applied that resulted in the present design. In the first step, a previously applied ablation setup was analyzed on the basis of computational fluid dynamics (CFD) results presented by D. Autrique et al. (Spectrochim. Acta, B 2008, 63, 257−270). By means of CFD simulations, the design was modified in such a way that it operated in the LFR regime. Experimental results demonstrate that the current design can indeed be regarded as an LFR. Furthermore, the operation under LFR conditions allowed some insight into the initial radial concentration distribution if the experimental ICPMS signal and analytical expressions are taken into account. Recommendations for a modified setup for more resilient spatial distributions are given. With the present setup, a washout time of 140 ms has been achieved for a 3% signal area criterion. Therefore, 7 Hz repetition rates can be applied with the present setup. Using elementary formulas of the analytical model, an upper bound for the washout times for similar setups can be predicted. The authors believe that the presented setup geometry comes close to the achievable limit for reliable short washout times.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000266601800014 Publication Date 2009-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 18 Open Access
Notes Approved Most recent IF: 6.32; 2009 IF: 5.214
Call Number UA @ lucian @ c:irua:76935 Serial 2492
Permanent link to this record
 

 
Author Autrique, D.; Bogaerts, A.; Lindner, H.; Garcia, C.C.; Niemax, K.
Title Design analysis of a laser ablation cell for inductively coupled plasma mass spectrometry by numerical simulation Type A1 Journal article
Year (down) 2008 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 63 Issue 2 Pages 257-270
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000254038900016 Publication Date 2007-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 26 Open Access
Notes Approved Most recent IF: 3.241; 2008 IF: 2.853
Call Number UA @ lucian @ c:irua:67086 Serial 656
Permanent link to this record