|   | 
Details
   web
Records
Author Zakharova, E.Y.; Kazakov, S.M.; Isaeva, A.A.; Abakumov, A.M.; Van Tendeloo, G.; Kuznetsov, A.N.
Title Pd5InSe and Pd8In2Se : new metal-rich homological selenides with 2D palladium-indium fragments : synthesis, structure and bonding Type A1 Journal article
Year (down) 2014 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 589 Issue Pages 48-55
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Two new metal-rich palladium-indium selenides, Pd5InSe and Pd8In2Se, were synthesized using a high-temperature ampoule technique. Their crystal structures were determined from Rietveld analysis of powder diffraction data, supported by energy-dispersive X-ray spectroscopy and selected area electron diffraction. Both compounds crystallize in tetragonal system with P4/mmm space group (Pd5InSe: a = 4.0290(3) angstrom, c = 6.9858(5) angstrom, Z = 1; Pd8In2Se: a = 4.0045(4) angstrom, c = 10.952(1) angstrom, Z = 1). The first compound belongs to the Pd5TlAs structure type, while the second one – to a new structure type. Main structural units in both selenides are indium-centered [Pd12In] cuboctahedra of the tetragonally distorted Cu3Au type, single-and double-stacked along the c axis in Pd5InSe and Pd8In2Se, respectively, alternating with [Pd8Se] rectangular prisms. DFT electronic structure calculations predict both compounds to be 3D metallic conductors and Pauli-like paramagnets. According to the bonding analysis based on the electron localization function topology, both compounds feature multi-centered palladium-indium interactions in their heterometallic fragments. (C) 2013 Elsevier B. V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000330181400008 Publication Date 2013-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited 12 Open Access
Notes Approved Most recent IF: 3.133; 2014 IF: 2.999
Call Number UA @ lucian @ c:irua:114840 Serial 3552
Permanent link to this record
 

 
Author Isaeva, A.A.; Makarevich, O.N.; Kutznetsov, A.N.; Doert, T.; Abakumov, A.M.; Van Tendeloo, G.
Title Mixed tellurides Ni3-xGaTe2 (0\leq x\leq0.65): crystal and electronic structures, properties, and nickel deficiency effects on vacancy ordering Type A1 Journal article
Year (down) 2010 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue 9 Pages 1395-1404
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Ni3-xGaTe2 series of compounds (0 x 0.65) was synthesized by a high-temperature ceramic technique at 750 °C. Crystal structures of three compounds in the series were determined by X-ray powder diffraction: Ni2.98(1)GaTe2 (RI = 0.042, Rp = 0.023, Rwp = 0.035), Ni2.79(1)GaTe2 (RI = 0.053, Rp = 0.028, Rwp = 0.039), Ni2.58(1)GaTe2 (RI = 0.081, Rp = 0.037, Rwp = 0.056); the structures were verified by electron diffraction and, for the former compound, high-resolution electron microscopy. The compounds crystallize in a hexagonal lattice with P63/mmc, and the structures can be regarded as a hexagonal close-packed array with a -Ga-Te-Te- stacking sequence. The octahedral and trigonal bipyramidal voids in the hcp structure are selectively filled with Ni atoms to form one entirely occupied and two partially occupied sites, thus allowing variations in the nickel content in the series of compounds Ni3-xGaTe2 (0 x 0.65). A superstructure with asup = 2asub (P63/mmc) has been identified for Ni3-xGaTe2 (0.5 x 0.65) by electron diffraction. Real-space, high-resolution images confirm an ordering of Ni atoms and vacancies inthe ab plane. Quantum-chemical calculations performed forNi3-xGaTe2 (x = 0, 0.25, 0.75, 1) suggest anisotropic metallic conductivity and Pauli paramagnetic behavior that are experimentally confirmed for Ni3GaTe2.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000276370300009 Publication Date 2010-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948;1099-0682; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 8 Open Access
Notes Approved Most recent IF: 2.444; 2010 IF: 2.910
Call Number UA @ lucian @ c:irua:82266 Serial 2090
Permanent link to this record