|   | 
Details
   web
Records
Author Lv, H.; Meng, S.; Cui, Z.; Li, S.; Li, D.; Gao, X.; Guo, H.; Bogaerts, A.; Yi, Y.
Title Plasma-catalytic direct oxidation of methane to methanol over Cu-MOR: Revealing the zeolite-confined Cu2+ active sites Type A1 Journal Article
Year (down) 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 496 Issue Pages 154337
Keywords A1 Journal Article; Direct oxidation Methanol production Plasma catalysis Copper-mordenite catalysts; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Efficient methane conversion to methanol remains a significant challenge in chemical industry. This study investigates the direct oxidation of methane to methanol under mild conditions, employing a synergy of nonthermal plasma and Cu-MOR (Copper-Mordenite) catalysts. Catalytic tests demonstrate that the Cu-MOR IE-3 catalyst (i.e., prepared by three cycles of ion exchange) exhibits superior catalytic performance (with 51 % methanol selectivity and 7.9 % methane conversion). Conversely, the Cu-MOR catalysts prepared via wetness impregnation tend to over-oxidize CH4 to CO and CO2. Through systematic catalyst characterizations (XRD, TPR, UV–Vis, HRTEM, XPS), we elucidate that ion exchange mainly leads to the formation of zeolite-confined Cu2+ species, while wetness impregnation predominantly results in CuO particles. Based on the catalytic performance, catalyst characterizations and in-situ FTIR spectra, we conclude that zeolite-confined Cu2+ species serve as the active sites for plasma-catalytic direct oxidation of methane to methanol.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links
Impact Factor 15.1 Times cited Open Access
Notes PetroChina Innovation Foundation, 2018D-5007-0501 ; Fundamental Research Funds for the Central Universities, DUT21JC40 ; Fundamental Research Funds for the Central Universities; China Scholarship Council; National Natural Science Foundation of China, 22272015 ; Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @ Serial 9260
Permanent link to this record
 

 
Author Fang, W.; Wang, X.; Li, S.; Hao, Y.; Yang, Y.; Zhao, W.; Liu, R.; Li, D.; Li, C.; Gao, X.; Wang, L.; Guo, H.; Yi, Y.
Title Plasma-catalytic one-step steam reforming of CH₄ to CH₃OH and H₂ promoted by oligomerized [Cu-O-Cu] species on zeolites Type A1 Journal article
Year (down) 2024 Publication Green chemistry : cutting-edge research for a greener sustainable future Abbreviated Journal
Volume 26 Issue 9 Pages 5150-5154
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Oligomerized [Cu-O-Cu] species are reported to be efficient in promoting plasma catalytic one-step steam reforming of methane to methanol and hydrogen, achieving 6.8% CH4 conversion and 73.1% CH3OH selectivity without CO2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001195192800001 Publication Date 2024-04-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.8 Times cited Open Access
Notes Approved Most recent IF: 9.8; 2024 IF: 9.125
Call Number UA @ admin @ c:irua:205514 Serial 9165
Permanent link to this record