|   | 
Details
   web
Record
Author Luo, Y.; He, Y.; Ding, Y.; Zuo, L.; Zhong, C.; Ma, Y.; Sun, M.
Title Defective biphenylene as high-efficiency hydrogen evolution catalysts Type A1 Journal article
Year (down) 2023 Publication Inorganic chemistry Abbreviated Journal
Volume 63 Issue 2 Pages 1136-1141
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electrocatalysts play a pivotal role in advancing the application of water splitting for hydrogen production. This research unveils the potential of defective biphenylenes as high-efficiency catalysts for the hydrogen evolution reaction. Using first-principles simulations, we systematically investigated the structure, stability, and catalytic performance of defective biphenylenes. Our findings unveil that defect engineering significantly enhances the electrocatalytic activity for hydrogen evolution. Specifically, biphenylene with a double-vacancy defect exhibits an outstanding Gibbs free energy of -0.08 eV, surpassing that of Pt, accompanied by a remarkable exchange current density of -3.08 A cm(-2), also surpassing that of Pt. Furthermore, we find the preference for the Volmer-Heyrovsky mechanism in the hydrogen evolution reaction, with a low energy barrier of 0.80 eV. This research provides a promising avenue for developing novel metal-free electrocatalysts for water splitting with earth-abundant carbon elements, making a significant step toward sustainable hydrogen production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001143581300001 Publication Date 2023-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:202780 Serial 9018
Permanent link to this record