|   | 
Details
   web
Record
Author Van Hoecke, L.; Kummamuru, N.B.; Pourfallah, H.; Verbruggen, S.W.; Perreault, P.
Title Intensified swirling reactor for the dehydrogenation of LOHC Type A1 Journal article
Year (down) 2023 Publication International journal of hydrogen energy Abbreviated Journal
Volume Issue Pages 1-13
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the recent advances towards more sustainable global energy supply, H2 is a possible alternative for large scale energy storage. In this view, Liquid Organic Hydrogen Carriers (LOHC) are a class of molecules that allow for easier long term energy storage compared to conventional H2 technologies. CFD simulations were used to showcase the hydrodynamics of the dehydrogenation of a LOHC in a new reactor unit, via a cold flow mock-up study. This reactor was designed to allow for a swirling motion of the liquid carrier material, favouring the removal of H2 gas from the flow and forcing the equilibrium of the reaction towards dehydrogenation, as well as to keep the catalyst particles in motion. The CFD simulations were validated qualitatively with experimental operation of the reactor, in a system with identical dimensionless numbers (Reynolds and Stokes), in order to use less costly products during the prototyping phase.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001139598200001 Publication Date 2023-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record
Impact Factor 7.2 Times cited Open Access Not_Open_Access: Available from 01.03.2024
Notes Approved Most recent IF: 7.2; 2023 IF: 3.582
Call Number UA @ admin @ c:irua:198534 Serial 8889
Permanent link to this record