|   | 
Details
   web
Record
Author Conti, S.; Chaves, A.; Pandey, T.; Covaci, L.; Peeters, F.M.; Neilson, D.; Milošević, M.V.
Title Flattening conduction and valence bands for interlayer excitons in a moire MoS₂/WSe₂ heterobilayer Type A1 Journal article
Year (down) 2023 Publication Nanoscale Abbreviated Journal
Volume Issue Pages 1-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We explore the flatness of conduction and valence bands of interlayer excitons in MoS2/WSe2 van der Waals heterobilayers, tuned by interlayer twist angle, pressure, and external electric field. We employ an efficient continuum model where the moire pattern from lattice mismatch and/or twisting is represented by an equivalent mesoscopic periodic potential. We demonstrate that the mismatch moire potential is too weak to produce significant flattening. Moreover, we draw attention to the fact that the quasi-particle effective masses around the Gamma-point and the band flattening are reduced with twisting. As an alternative approach, we show (i) that reducing the interlayer distance by uniform vertical pressure can significantly increase the effective mass of the moire hole, and (ii) that the moire depth and its band flattening effects are strongly enhanced by accessible electric gating fields perpendicular to the heterobilayer, with resulting electron and hole effective masses increased by more than an order of magnitude – leading to record-flat bands. These findings impose boundaries on the commonly generalized benefits of moire twistronics, while also revealing alternative feasible routes to achieve truly flat electron and hole bands to carry us to strongly correlated excitonic phenomena on demand.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001047512300001 Publication Date 2023-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access Not_Open_Access: Available from 25.01.2024
Notes Approved Most recent IF: 6.7; 2023 IF: 7.367
Call Number UA @ admin @ c:irua:198290 Serial 8819
Permanent link to this record