|   | 
Details
   web
Record
Author Sevik, C.; Çakir, D.
Title Tailoring Storage Capacity and Ion Kinetics in Ti2CO2/Graphene Heterostructures by Functionalization of Graphene Type A1 Journal article
Year (down) 2019 Publication Physical review applied Abbreviated Journal
Volume 12 Issue 1 Pages 014001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we evaluate the electrochemical performance of heterostructures made up of Ti2CO2 and chemically modified graphene for Li batteries. We find that heteroatom doping and molecule intercalation have a significant impact on the storage capacity and Li migration barrier energies. While N and S doping do not improve the storage capacity, B doping together with molecule interaction make it possible to intercalate two layers of Li, which stick separately to the surface of Ti2CO2 and B-doped graphene. The calculated diffusion-barrier energies (E-diff), which are between 0.3 and 0.4 eV depending on Li concentration, are quite promising for fast charge and discharge rates. Besides, the predicted E-diff as much as 2 eV for the diffusion of the Li atom from the Ti2CO2 surface to the B-doped graphene surface significantly suppresses the interlayer Li migration, which diminishes the charge and discharge rates. The calculated volume and lattice parameter changes indicate that Ti2CO2/graphene hybrid structures exhibit cyclic stability against Li loading and unloading. Consequently, first-principles calculations we perform evidently highlight the favorable effect of molecular intercalation on the capacity improvement of ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000473312000001 Publication Date 2019-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193755 Serial 8640
Permanent link to this record