|   | 
Details
   web
Record
Author Peeters, H.; Lenaerts, S.; Verbruggen, S.W.
Title Benchmarking the photocatalytic self-cleaning activity of industrial and experimental materials with ISO 27448:2009 Type A1 Journal article
Year (down) 2023 Publication Materials Abbreviated Journal Materials
Volume 16 Issue 3 Pages 1119-13
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Various industrial surface materials are tested for their photocatalytic self-cleaning activity by performing the ISO 27448:2009 method. The samples are pre-activated by UV irradiation, fouled with oleic acid and irradiated by UV light. The degradation of oleic acid over time is monitored by taking water contact angle measurements using a contact angle goniometer. The foulant, oleic acid, is an organic acid that makes the surface more hydrophobic. The water contact angle will thus decrease over time as the photocatalytic material degrades the oleic acid. In this study, we argue that the use of this method is strongly limited to specific types of surface materials, i.e., only those that are hydrophilic and smooth in nature. For more hydrophobic materials, the difference in the water contact angles of a clean surface and a fouled surface is not measurable. Therefore, the photocatalytic self-cleaning activity cannot be established experimentally. Another type of material that cannot be tested by this standard are rough surfaces. For rough surfaces, the water contact angle cannot be measured accurately using a contact angle goniometer as prescribed by the standard. Because of these limitations, many potentially interesting industrial substrates cannot be evaluated. Smooth samples that were treated with an in-house developed hydrophilic titania thin film (PCT/EP2018/079983) showed a great photocatalytic self-cleaning performance according to the ISO standard. Apart from discussing the pros and cons of the current ISO standard, we also stress how to carefully interpret the results and suggest alternative testing solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000930734100001 Publication Date 2023-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.4; 2023 IF: 2.654
Call Number UA @ admin @ c:irua:193337 Serial 7284
Permanent link to this record