|   | 
Details
   web
Record
Author Verheyen, C.; van ’t Veer, K.; Snyders, R.; Bogaerts, A.
Title Atomic oxygen assisted CO2 conversion: A theoretical analysis Type A1 Journal article
Year (down) 2023 Publication Journal of CO2 utilization Abbreviated Journal
Volume 67 Issue Pages 102347
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract With climate change still a pressing issue, there is a great need for carbon capture, utilisation and storage (CCUS)

methods. We propose a novel concept where CO2 conversion is accomplished by O2 splitting followed by the

addition of O atoms to CO2. The latter is studied here by means of kinetic modelling. In the first instance, we

study various CO2/O ratios, and we observe an optimal CO2 conversion of around 30–40% for 50% O addition.

Gas temperature also has a large influence, with a minimum temperature of around 1000 K to a maximum of

2000 K for optimal conversion. In the second instance, we study various CO2/O/O2 ratios, due to O2 being a

starting gas. Also here we define optimal regions for CO2 conversion, which reach maximum conversion for a

CO2 fraction of 50% and an O/O2 ratio bigger than 1. Those can be expanded by heating on one hand, for low

atomic oxygen availability, and by quenching after reaction on the other hand, for cases where the temperatures

are too high. Our model predictions can serve as a guideline for experimental research in this domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000908384000005 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.7 Times cited Open Access OpenAccess
Notes This research was supported by FWO – PhD fellowship-aspirant, Grant 1184820N. We also want to thank Bj¨orn Loenders and Joachim Slaets. Approved Most recent IF: 7.7; 2023 IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:192321 Serial 7231
Permanent link to this record