|   | 
Details
   web
Record
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title Optimal experiment design for nanoparticle atom counting from ADF STEM images Type H2 Book chapter
Year (down) 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 145-175
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this chapter, the principles of detection theory are used to quantify the probability of error for atom counting from high-resolution scanning transmission electron microscopy (HRSTEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom counting using the expression of the probability of error. We show that for very thin objects the low-angle annular dark-field (LAADF) regime is optimal and that for thicker objects the optimal inner detector angle increases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177530 Serial 6785
Permanent link to this record