|   | 
Details
   web
Record
Author Torsello, D.; Ummarino, G.A.; Bekaert, J.; Gozzelino, L.; Gerbaldo, R.; Tanatar, M.A.; Canfield, P.C.; Prozorov, R.; Ghigo, G.
Title Tuning the intrinsic anisotropy with disorder in the CaKFE₄As₄ superconductor Type A1 Journal article
Year (down) 2020 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl
Volume 13 Issue 6 Pages 064046-64049
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report on the anisotropy of the London penetration depth of CaKFe4As4, discussing how it relates to its electronic structure and how it modifies under introduction of disorder, both chemically induced (by Ni substitution) and irradiation induced (by 3.5-MeV protons). Indeed, CaKFe4As4 is particularly suitable for the study of fundamental superconducting properties due to its stoichiometric composition, exhibiting clean-limit behavior in the pristine samples and having a fairly high critical temperature, T-c approximate to 35 K. The London penetration depth lambda(L) is measured with a microwave-coplanar-resonator technique that allows us to deconvolve the anisotropic contributions lambda(L,ab) and lambda(L,c) and obtain the anisotropy parameter gamma(lambda) = lambda(L,c)/lambda(L,ab). The gamma(lambda) (T) found for the undoped pristine sample is in good agreement with previous literature and is here compared to ab initio density-functional-theory and Eliashberg calculations. The dependence of gamma(lambda) (T) on both chemical and irradiation-induced disorder is discussed to highlight which method is more suitable to decrease the direction dependence of the electromagnetic properties while maintaining a high critical temperature. Lastly, the relevance of an intrinsic anisotropy such as gamma(lambda) on application-related anisotropic parameters (critical current, pinning) is discussed in light of the recent employment of CaKFe4As4 in the production of wires.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000540915800003 Publication Date 2020-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited 4 Open Access
Notes ; This work was partially supported by the Italian Ministry of Education, University and Research (Project PRIN “HIBiSCUS,” Grant No. 201785KWLE). J.B. acknowledges the support of a postdoctoral fellowship of the Research Foundation-Flanders (FWO). The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. Work done at Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. G.A.U. acknowledges support from the MEPhI Academic Excellence Project (Contract No. 702.a03.21.0005). ; Approved Most recent IF: 4.6; 2020 IF: 4.808
Call Number UA @ admin @ c:irua:170178 Serial 6641
Permanent link to this record