|   | 
Details
   web
Record
Author Bafekry, A.
Title Graphene-like BC₆N single-layer: tunable electronic and magnetic properties via thickness, gating, topological defects, and adatom/molecule Type A1 Journal article
Year (down) 2020 Publication Physica E-Low-Dimensional Systems & Nanostructures Abbreviated Journal Physica E
Volume 118 Issue Pages 113850-15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By using density functional theory-based first-principles calculations, we investigate the structural, electronic, optical, and transport properties of pristine single-layer BC6N. Under different external actions and functionalization. Increasing the thickness of the structure results in a decrease of the band gap. Applying a perpendicular electric field decreases the band gap and a semiconductor-to-topological insulator transition is revealed. Uniaxial and biaxial strains of +8% result in a semiconductor-to-metal transition. Nanoribbons of BC6N having zigzag edge with even (odd) values of widths, become metal (semiconductor), while the armchair edge nanoribbons exhibit robust semiconducting behavior. In addition, we systematically investigate the effect of surface adatom and molecule, substitutional impurity and defect engineering on the electronic properties of single-layer BC6N and found transitions from metal to half-metal, to ferromagnetic metal, to dilute magnetic semiconductor, and even to spin-glass semiconductor. Furthermore we found that, topological defects including vacancies and Stone–Wales type, induce magnetism in single-layer BC6N.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000515321700032 Publication Date 2019-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited 30 Open Access
Notes ; ; Approved Most recent IF: 3.3; 2020 IF: 2.221
Call Number UA @ admin @ c:irua:169750 Serial 6530
Permanent link to this record