|   | 
Details
   web
Record
Author Berdiyorov, G.; Harrabi, K.; Mehmood, U.; Peeters, F.M.; Tabet, N.; Zhang, J.; Hussein, I.A.; McLachlan, M.A.
Title Derivatization and diffusive motion of molecular fullerenes : ab initio and atomistic simulations Type A1 Journal article
Year (down) 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 025101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first principles density functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of derivatization on the electronic and transport properties of C-60 fullerene. As a typical example, we consider [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM), which forms one of the most efficient organic photovoltaic materials in combination with electron donating polymers. Extra peaks are observed in the density of states (DOS) due to the formation of new electronic states localized at/near the attached molecule. Despite such peculiar behavior in the DOS of an isolated molecule, derivatization does not have a pronounced effect on the electronic transport properties of the fullerene molecular junctions. Both C-60 and PCBM show the same response to finite voltage biasing with new features in the transmission spectrum due to voltage induced delocalization of some electronic states. We also study the diffusive motion of molecular fullerenes in ethanol solvent and inside poly(3-hexylthiophene) lamella using reactive molecular dynamics simulations. We found that the mobility of the fullerene reduces considerably due to derivatization; the diffusion coefficient of C-60 is an order of magnitude larger than the one for PCBM. (c) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000357961000036 Publication Date 2015-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 2 Open Access
Notes ; K.H., U.M. and I.A.H. would like to thank the National Science, Technology and Innovation Program of KACST for funding this research under Project No. 12-ENE2379-04. They also acknowledge support from KFUPM and Research Institute. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:127098 Serial 652
Permanent link to this record