|   | 
Details
   web
Record
Author Wang, C.; Xin, X.; Shu, M.; Huang, S.; Zhang, Y.; Li, X.
Title Scalable synthesis of one-dimensional Na2Li2Ti6O14 nanofibers as ultrahigh rate capability anodes for lithium-ion batteries Type A1 Journal article
Year (down) 2019 Publication Inorganic Chemistry Frontiers Abbreviated Journal Inorg Chem Front
Volume 6 Issue 3 Pages 646-653
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Carbon anode materials for Li-ion batteries have been operated close to their theoretical rate and cycle limits. Therefore, titanium-based materials have attracted great attention due to their high stability. Here, Na2Li2Ti6O14 nanofibers as anode materials were prepared through a controlled electrospinning method. The Na2Li2Ti6O14 nanofibers presented superior electrochemical performance with high rate capability and long cycle life and can be regarded as a competitive anode candidate for advanced Li-ion batteries. One-dimensional (1D) Na2Li2Ti6O14 nanofibers are able to deliver a capacity of 128.5 mA h g(-1) at 0.5C, and demonstrate superior high-rate charge-discharge capability and cycling stability (the reversible charge capacity is 77.8 mA h g(-1) with a capacity retention of 99.45% at the rate of 10C after 800 cycles). The 1D structure is considered to contribute remarkably to increased rate capability and stability. This simple and scalable method indicates that the Na2Li2Ti6O14 nanofibers have a practical application potential for high performance lithium-ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461092500027 Publication Date 2018-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-1553 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.036 Times cited 3 Open Access Not_Open_Access
Notes ; The authors acknowledge financial support from the National Natural Science Foundation of China (21571110), Natural Science Foundation of Zhejiang Province (LY18B010003), and the Ningbo Key Innovation Team (2014B81005), and sponsorship by the K.C. Wong Magna Fund in Ningbo University. ; Approved Most recent IF: 4.036
Call Number UA @ admin @ c:irua:158566 Serial 5258
Permanent link to this record