|   | 
Details
   web
Record
Author Van Pottelberge, R.; Van Duppen, B.; Peeters, F.M.
Title Electrical dipole on gapped graphene : bound states and atomic collapse Type A1 Journal article
Year (down) 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 16 Pages 165420
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the energy spectrum, wave functions, and local density of states of an electrical dipole placed on a sheet of gapped graphene as function of the charge strength Z alpha for different sizes of the dipole and for different regularization parameters. The dipole is modeled as consisting of a positive and negative charge. Bound states are found within the gap region with some energy levels that anticross and others that cross as function of the impurity strength Z alpha. The anticrossings are more pronounced and move to higher charges Z alpha when the length of the dipole decreases. These energy levels turn into atomic collapse states when they enter the positive (or negative) energy continuum. A smooth transition from the single-impurity behavior to the dipole one is observed: The states diving towards the continuum in the single-impurity case are gradually replaced by a series of anticrossings that represent a continuation of the diving states in the single-impurity case. By studying the local density of states at the edge of the dipole we show how the series of anticrossings persist in the positive and negative continuum.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000447302700010 Publication Date 2018-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research grant for R.V.P. and a postdoctoral grant for B.V.D. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:154728UA @ admin @ c:irua:154728 Serial 5094
Permanent link to this record