|   | 
Details
   web
Record
Author Van de Put, M.L.; Sorée, B.; Magnus, W.
Title Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field Type A1 Journal article
Year (down) 2017 Publication Journal of computational physics Abbreviated Journal J Comput Phys
Volume 350 Issue Pages 314-325
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Wigner-Liouville equation is reformulated using a spectral decomposition of the classical force field instead of the potential energy. The latter is shown to simplify the Wigner-Liouville kernel both conceptually and numerically as the spectral force Wigner-Liouville equation avoids the numerical evaluation of the highly oscillatory Wigner kernel which is nonlocal in both position and momentum. The quantum mechanical evolution is instead governed by a term local in space and non-local in momentum, where the non locality in momentum has only a limited range. An interpretation of the time evolution in terms of two processes is presented; a classical evolution under the influence of the averaged driving field, and a probability-preserving quantum-mechanical generation and annihilation term. Using the inherent stability and reduced complexity, a direct deterministic numerical implementation using Chebyshev and Fourier pseudo-spectral methods is detailed. For the purpose of illustration, we present results for the time evolution of a one-dimensional resonant tunneling diode driven out of equilibrium. (C) 2017 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000413379000016 Publication Date 2017-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.744 Times cited 5 Open Access
Notes ; ; Approved Most recent IF: 2.744
Call Number UA @ lucian @ c:irua:146630 Serial 4780
Permanent link to this record