|   | 
Details
   web
Record
Author Zebrowski, D.P.; Peeters, F.M.; Szafran, B.
Title Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots Type A1 Journal article
Year (down) 2017 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech
Volume 32 Issue 6 Pages 065016
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Spin transitions driven by a periodically varying electric potential in dilute fluorinated graphene quantum dots are investigated. Flakes of monolayer graphene as well as electrostatic electron traps induced in bilayer graphene are considered. The stationary states obtained within the tight-binding approach are used as the basis for description of the system dynamics. The dilute fluorination of the top layer lifts the valley degeneracy of the confined states and attenuates the orbital magnetic dipole moments due to current circulation within the flake. The spin-orbit coupling introduced by the surface deformation of the top layer induced by the adatoms allows the spin flips to be driven by the AC electric field. For the bilayer quantum dots the spin flip times is substantially shorter than the spin relaxation. Dynamical effects including many-photon and multilevel transitions are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000402405800007 Publication Date 2017-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.305 Times cited Open Access
Notes ; This work was supported by the National Science Centre according to decision DEC-2013/11/B/ST3/03837 and by the Flemish Science Foundation (FWO-VL). ; Approved Most recent IF: 2.305
Call Number UA @ lucian @ c:irua:144238 Serial 4646
Permanent link to this record